点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:绝美晚霞竟然可以预测,你猜下次再现时间是……
首页> 光明科普云> 图文 > 正文

绝美晚霞竟然可以预测,你猜下次再现时间是……

来源:光明网-蝌蚪五线谱2024-05-16 17:20

  5月14日,“北京出现绝美晚霞”的消息登上热搜,引发热议。下班路上抬头突然看到晚霞,匆忙的人们纷纷驻足观赏,瞬间治愈了一整天的疲惫。

绝美晚霞竟然可以预测,你猜下次再现时间是……

不过,这样的浪漫可不是机缘巧合

而是可以预测的

看完这篇文章

一起来试试能不能蹲到晚霞吧~

  01 霞的分类

  日出、日落时出现在天空、云、山川或建筑物上的色彩叫做霞。日出时的霞叫朝霞,日落时的霞叫晚霞。根据发出霞光的对象,可以分为天空霞、云霞和地物霞。

  天空霞

  由空气分子及其悬浮的尘埃、杂质等颗粒对太阳余晖散射形成的霞。此时的天空不需要有云,整个天空都会布满霞光。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  天空霞 李俊摄

  云霞

  云霞是天空的云对大气层散射后的太阳余晖再产生漫反射、散射所形成的色彩,披上红色霞光的云也常被称为火烧云。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  云霞 李海胜摄

  地物霞

  我国著名气象学家王鹏飞在其论著中专门强调了由山川、建筑物等对太阳余晖漫反射形成的色彩也是霞,霞的颜色主要由太阳余晖的颜色决定,这里我们称之为地物霞。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  地物霞 戴云伟摄

  每年冬至前后,落日光辉穿过北京颐和园的十七孔桥形成地物霞,所有桥洞都被夕阳染上了金灿灿的颜色,呈现出壮丽的景观,俗称“金光穿洞”。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  地物霞(金光穿洞) 王秀丽摄

  02 霞的成因

  要想了解霞的成因,我们首先要了解大气中的一种光学作用—散射。

  太阳光在穿透大气层时,被日光照射到的所有的空气分子以及悬浮在其中的各种颗粒,都会变成一个个独立的光源,就像一盏盏“灯泡”照亮周围,因为它们个头实在太小,亮度也太弱,所以我们在视觉上无法分辨出每个光源,只能看到发亮的天空。

  如果没有大气层里的这些“灯泡”发光,即便在白天,太阳之外的天空看上去也会是一片漆黑。空气分子对不同的光散射作用不同,散射蓝色光的能力是红色光的3.44倍,因此平时我们看到的天空是蓝色的。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  散射作用 戴云伟绘

  在日出、日落时,太阳光线要比中午经历更长距离的大气层散射,因此,到了低空,日光中会剩下更多的偏红色成分,橙红色的余晖就弥漫了低空大气,这正是洁净的天空也会出现霞的原因。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  霞的简单成因示意图 戴云伟绘

  除了大气层中空气分子产生相对简单的散射作用外,大气中还悬浮着水滴、冰晶、尘埃、烟粒、孢子、花粉、细菌等气溶胶质粒。这些颗粒对光的散射作用就相对复杂一些,它们会因自身直径的大小而散射出不同颜色的光。

  在有云时,云在霞的形成中扮演着更为重要的“魔术师”角色,它们通过自身形状、厚度、水滴或冰晶大小的变化不断变换着霞的颜色,让每次出现的霞都独具一格,绚丽多彩。

  另外,云的反射也发挥着辅助作用。天空、云与地物之间通过各种散射与反射的交相辉映,从而形成更加复杂多样的霞。此时已经很难分辨到底是谁在反射、谁在散射。复杂的霞如同陈年老酒,你已经无法分辨具体是何种成分在散发着芳香。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  霞的复杂成因示意图 戴云伟绘

  03 如何预测霞的出现?

  霞作为一种出现在大气对流层中的天气现象,和大气中的其他现象一样,都可以结合大气科学理论,对霞的出现作出提前预报。

  在万里无云的晴空,如果空气中悬浮的气溶胶颗粒不断增多,能见度降低到10千米以下时,就形成了霾这种现象。只要天气预报中预报到在日出或日落时段内有霾,基本就可以判定会有天空霞的出现。

  云是天气系统的“外衣”,当带来天气变化的天气系统经过当地时,往往有一系列的云会出现在天气系统的不同位置。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  天气系统中各种云对应的位置 戴云伟绘

  在天气系统即将到来或即将移出本地时,恰好出现在日出或日落时段,那么我们就可以根据天气系统的移动规律预报出云霞的出现。

  5月14日中午,笔者就根据天气系统的移动规律预报到了晚上可能出现云霞,这次云霞就出现在一次天气系统过境的尾声阶段的层积云上。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  04 霞对天气的预兆意义

  自古以来,人类就在关注霞,并试图找出它与天气变化的关系。通过长期的经验, 也总结了很多有预兆意义的气象谚语来预测天气。

  因为霞光主要是空气分子或悬浮质粒(如水滴、冰晶、尘埃、烟粒、孢子、花粉、细菌等)对光的散射而形成。而天气变化时,天空中的水汽和云都会相应发生变化。因此,不同的霞光可以一定程度上间接反映天气变化以及空气质量等情况。

  当天气发生变化时,空气中水汽增多,一些悬浮的气溶胶颗粒易于吸附水汽成为小水滴并继续悬浮于空中。水汽含量越大,霞的颜色越鲜艳,且富于红色。大气中的气溶胶颗粒越多,霞的亮度越弱。因此霞的颜色可以反映大气性质和状态。

  “朝霞不出门,晚霞行千里”是我们熟知的谚语。这里的朝霞主要是指云霞。早晨大气稳定,尘埃少,如果云霞满天,这是天气系统即将影响本地的预兆。

  晚霞主要指的是天空霞,通常是由天气系统过境后的湿洁空气形成,所以意味着天气将晴好。

  不过,有时候恰逢天气系统过境,天气系统后部经常出现的高积云、层积云等也会形成色彩绚丽的云霞。

  霞光大多是红色,也会随着云或大气中气溶胶颗粒成分与含量等的变化而出现紫色、金色、青色、绿色等其他颜色。例如,当工业排放的细小气溶胶颗粒增多时,容易形成紫色等其他颜色的霞。因此,霞光也可以一定程度上间接反映空气质量。

绝美晚霞竟然可以预测,你猜下次再现时间是……

  紫色的霞 戴云伟摄

  不同成分和含量下所形成霞的颜色差异很大,尤其是粒子经过多次散射、相互映射,更会让霞光丰富多样、色彩斑斓。不过,无论出现什么异样的霞光,其本质上的始作俑者都是前面讲到的几个要素过程。

  支持单位:北京气象学会

  作者:戴云伟 中国气象局华风气象传媒集团气象服务副首席、高级工程师

  编辑:董小娴 蔡琳

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 新年迎接新生命

  • “津旅时光号”天津北站—北京站线路开通

独家策划

推荐阅读
2024年,中国制造业顶压前行、向新向优,制造强国发展指数与德国和日本处于同一区间,进入全球制造强国第二阵列,成为继美国、德国、日本后第四个迈入全球制造强国行列的国家。
2025-12-31 08:56
突破性成果勾勒出我国高水平科技自立自强的清晰轨迹。
2025-12-31 08:58
“预计元旦期间,我国大部地区降水较弱,但中东部将出现显著降温,南方地区湿冷感明显。
2025-12-31 09:12
12月30日,中国气象局召开新闻发布会,专题发布《全球气象发展报告2025》(以下简称《报告》),呈现2024年全球气象发展态势。
2025-12-31 09:04
北斗三号全球卫星导航系统组网阶段的主要目标是把卫星建好,运行阶段的主要目标则是管好、用好。
2025-12-31 09:03
光明日报北京12月29日电 记者姚亚奇29日从国家林草局获悉,“十四五”期间,我国采取有力措施,加快推进林草种苗振兴,收集保存林草种质资源14.74万份,较“十三五”末增长180%,我国重要乡土树种草种和珍稀濒危林草种质资源得到有效保护。
2025-12-30 09:23
由自然资源部南海生态中心联合相关单位共同编制的《黄岩岛珊瑚礁生态调查报告》29日在京发布。报告基于船舶走航、潜水调查、卫星航空遥感、原位观测等方式,结合历史数据分析,对黄岩岛珊瑚礁生态状况进行了调查评估。
2025-12-30 09:23
松花江畔,风机和光伏正齐齐出力,一端是新能源电力源源不断产出;另一端,化工装置稳定运行,“绿色石油”涌流而出。
2025-12-30 09:37
执行中国第42次南极考察任务的“雪龙”号极地科考破冰船于北京时间29日顺利抵达秦岭站海域,并开展卸货作业。
2025-12-30 09:32
研究人员在火星发现了适合人类探索的浅层水冰的痕迹。研究团队借助高分辨率轨道影像,对火星地貌进行了研究,并在中纬度的亚马孙平原发现了埋藏深度不足1米的冰痕迹。易获取的冰能够让宇航员在火星长期生存与工作期间,制备饮用水、可呼吸的氧气、燃料及其他必需品。
2025-12-30 09:27
截至12月28日,新疆油田2025年二氧化碳注入量突破100万吨,成为我国首个实现年注碳百万吨的油田。”新疆油田公司执行董事、党委书记石道涵介绍,油田年注碳量从2022年的12.6万吨跃升至2025年的100万吨,已累计注入二氧化碳超200万吨。
2025-12-30 09:26
12月26日,我国首个覆盖6种轮状病毒血清型的六价轮状病毒疫苗在湖北武汉完成首剂接种。
2025-12-29 10:23
美国哈佛—史密森尼天体物理中心天文学家利用美国国家航空航天局(NASA)的哈勃空间望远镜,首次观测到围绕年轻恒星运行的迄今最大原行星盘——IRAS 23077+6707。
2025-12-29 10:10
2025年12月27日0时07分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射风云四号C星(03星),卫星顺利进入预定轨道,发射任务取得圆满成功。
2025-12-29 10:07
中国科学院空天信息创新研究院研究员王振友团队联合四川省文物考古研究院等机构的科研人员,自主研制了显微时间门控拉曼光谱仪,并利用该仪器对三星堆出土的4块象牙碎片进行无损检测,揭示了象牙在长期地质作用下的老化过程。
2025-12-29 10:01
近期,工信部发布《场景化、图谱化推进重点行业数字化转型的参考指引(2025版)》,聚焦14个重点行业,绘制企业数字化转型“场景导航图。
2025-12-29 09:59
当日,石景山区AI for Science平台正式上线,该平台由枫清科技携手火山引擎联合打造,以AI驱动科研机构与企业的科研效率革新,降低科研门槛。
2025-12-27 20:21
记者25日从国防科技大学获悉,该校磁浮团队近日在磁悬浮试验中,成功在两秒内将吨级试验车加速至700公里/小时。测试速度打破了同类型平台全球纪录,成为全球最快的超导电动磁悬浮试验速度。
2025-12-26 10:08
12月24日,中国科学院重大科技基础设施“载人潜水器与海上作业母船”用户委员会2025年度会议披露:我国“深海勇士”号、“奋斗者”号、“蛟龙”号三大载人潜水器全年完成314次深潜,累计下潜总量达1746次,2026年将向2000次目标稳步迈进。
2025-12-26 10:05
日前,国家自然科学基金委员会在北京召开国家自然科学基金首批重大非共识项目遴选会议,标志着重大非共识项目正式启动试点。国家自然科学基金委员会将深入实施并持续优化重大非共识项目遴选机制,引导广大科研人员聚焦高水平原创性科研工作狠下功夫。
2025-12-26 09:59
加载更多