点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

首页> 科普频道> 天文前沿 > 正文

宇宙中微子的那些事儿

来源:光明网2021-09-27 16:48

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  降世

  1930年,为了解决衰变过程中的能量不守恒问题,泡利引入了中微子的概念。也许对一般人而言,仅仅是作为中微子的提出者这个头衔,就足以让他名垂物理学史,但对泡利而言,这可能只是他“拿不出手的”一项成就之一。泡利出生于1900年,是名副其实的天才儿童,年少成名,在他还是大学生的时候就为德国的《数学科学百科全书》撰写了一篇长达237页的关于相对论的综述,这篇综述甚至连爱因斯坦都做出了惊为天人的评价,他都难以相信这是出自一位只有21岁的年轻人之手,而即使在整整百年后的今天看来,他的这篇综述都毫不过时。25岁的时候,泡利便提出了后来使自己获得了诺贝尔物理学奖的“泡利不相容原理”。于我们一般人来说,泡利可谓一生都在开挂。

宇宙中微子的那些事儿

图1. 1925年,爱因斯坦和泡利在莱顿(图源:美国物理联合会)

  在中微子诞生的过程中,还有另一个天才物理学家费米也作出了重要贡献。1934年,费米基于泡利提出的中微子理论基础很好的描述了β衰变。费米可谓一个罕见的全才物理学家,他在物理的许多方面都有杰出的贡献,尤为罕见的是他既是世界顶尖的理论物理学家,又是世界顶尖的实验物理学家。是他试验成功了世界上第一个受控的核反应堆,因此他又被称为核能之父。

  止戈

  尽管中微子理论已经被提出来了,但是这种粒子与其他粒子的相互作用却非常微弱,几乎无法探测。泡利本人就曾对他的同事说为了拯救β衰变的能量守恒问题,他做了一件理论物理学家不应该做的事,就是他引入了一个永远都不能被实验证实的粒子。幸好上帝这次没有站在泡利这边,虽然中微子的探测非常困难,但是在几十年后还是成功的被探测到了。在诺贝尔物理学奖的历史上,中微子独自就获得了四次“殊荣”,而前三次的获奖皆因直接探测到了中微子。第一次是在1988年颁给莱德曼、施瓦茨和斯坦伯格,奖励他们在1962年发现了第二种中微子。第二次是在1995颁给了栾斯,奖励栾斯和科万1968年在原子核的反应堆里探测到了中微子,科万由于已经去世二十年之久没能站上诺贝尔的颁奖舞台。第三次是在2002年颁给了戴维斯和小柴昌俊,分别由于探测到来自太阳的和来自超新星的中微子而获奖。

宇宙中微子的那些事儿

图2. 由史匹哲太空望远镜、哈勃太空望远镜和昌德拉X射线天文台的图像合成的开普勒超新星图片(图源:NASA)

  近几十年来关于中微子物理的较大突破几乎都来自天体物理。长期困扰着人们的太阳中微子消失之谜以及大气中微子的反常现象,都被无比确凿的实验证据证实是来自于中微子的振荡。中微子有三种类型,随着中微子的传播,它们可以在不同类型之间切换,这一现象即是中微子振荡,中微子振荡只有在中微子有质量的情况下才会发生。中微子振荡的理论早在1957年就由物理学家庞蒂科夫提出,但是直到最近几十年才被证实。中微子振荡的发现也在2015年被第四次授予了诺贝尔物理学奖,但遗憾的是庞蒂科夫早已去世。

  悬念

  在粒子标准模型里中微子是无质量的,但中微子振荡实验证实了中微子有质量。尽管振证实了中微子有质量,但是它只能测得中微子质量的平方差,而对中微子质量的绝对值并不敏感,因此我们目前并不知道每种中微子的绝对质量是多少。这也导致了目前中微子质量有两种可能的排序,如图3所示,我们分别称为正常和反常的层次结构

宇宙中微子的那些事儿

图3. 两种可能的中微子质量顺序的表示(图源:https://indico.fnal.gov/event/48030/contributions/213913/attachments/142638/180121/Superheroes-STEM_Neutrino-Intro_2021-05-01.pdf)

  有质量的中微子在宇宙大尺度结构的形成和演化中扮演了重要的作用。目前对中微子质量最好的限制是来自于宇宙学的观测。接下来,让我们来看一下大爆炸之后主要的宇宙膨胀历史和以及微子在宇宙膨胀历史中的演化和中微子质量的宇宙学效应。

  宇宙膨胀历史

  我们都知道经历了大爆炸之后的宇宙,一瞬间暴富,由此开始自我膨胀,同时也开始逐渐降温。此时宇宙中的各种成分之间虽然发生着散射这样的小打小闹,但也算邻里和睦,整体还是处在热平衡的状态。但是随着宇宙不断的膨胀,宇宙中的各成分间也开始上演江湖上的爱恨情仇。

  宇宙在极早期阶段发生了暴胀,正反重子不对称的产生以及冷暗物质的形成等,这一阶段持续的时间极短,大约从10-43秒到10-11秒,此时宇宙的温度降至了约1015K,并开始发生电弱相变,大多数粒子由此获得了质量。当宇宙成长到10-5秒左右时,此时宇宙温度约1013K,强子相变开始发生,夸克形成强子和介子。当宇宙继续成长到第三分钟,宇宙的温度也降到了约109K,此时轻元素开始由大爆炸核合成过程形成。

宇宙中微子的那些事儿

图4. 宇宙膨胀历史(图源:网络)

  早期宇宙一直是由辐射主导,但辐射要比物质随温度下降得更快,所以宇宙持续膨胀会来到辐射与物质相等的时刻,此时宇宙的的年龄大约在6万年左右,温度约104K。当宇宙继续膨胀到温度约3000K时,几乎所有的自由电子被束缚到氢原子和氦原子中,这一过程又被称为复合时期,紧接着到最后散射时期,光子也从最后散射面脱耦出来,此时宇宙的年龄大约在38万年,我们现在所观测到的宇宙微波背景(CMB)图5,就是最后散射时期脱耦出来的光子。脱耦出来的光子其后也将在宇宙中自由流动,宇宙变得完全透明,这一时期被称为宇宙的“黑暗时代”。直到第一代天体的形成,这些天体发射出的紫外辐射又把大多数中性氢电离了,宇宙再次变得不那么透明,这一过程称为宇宙的再电离,此时宇宙的年龄大约在2亿年左右。随着宇宙不断的膨胀,物质也随温度不断下降,经过物质与暗能量相等时刻后,宇宙开始由暗能量主导,暗能量主导的宇宙会加速膨胀。今天我们的宇宙大约百分之七十是暗能量,剩下约百分之二十五的暗物质和百分之五的重子。

  宇宙中微子历史

  在宇宙膨胀到第一秒时,我们所关心的中微子便开始单独登上宇宙演化的舞台,此时宇宙的温度约1011K,中微子从之前的平衡状态中脱耦出来,开始自由流动。紧接着当宇宙温度降到约5×109K时,大部分正负电子对湮灭成光子,并把自己的熵传给了光子,由于中微子已率先脱耦出去,这也导致了后来中微子的温度要比光子低了一些。在复合时期之后,宇宙的温度已随着宇宙膨胀明显下降,至少有两种中微子开始变得非相对论,并与重子和冷暗物质一起对宇宙的物质成分做出贡献。

  中微子的自由流动在宇宙中微子历史中扮演了很重要的角色,在自由流动时,它们像自由下落的粒子一样沿着测地线运动。定性来说,中微子自由流动对之后宇宙中结构的形成有很重要的影响,在中微子自由流动的尺度内,由于其具有很大的速度,所以不能被限制在势阱中,导致小尺度上结构的形成的难度加大。中微子在小尺度上对结构形成的抑制效应随着中微子质量的增加而增加,并提供了中微子质量最清晰的观测特征之一。

宇宙中微子的那些事儿

图5. 普朗克卫星观测到的宇宙微波背景(CMB),图中的斑点代表着早期宇宙中温度在十万分之一量级上的细微起伏。这些起伏,形成今天的恒星和星系(图源:ESA and the Planck Collaboration, https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_CMB)

  中微子质量的宇宙学效应

  中微子质量对宇宙学演化的效应可以分为背景效应和微扰效应两部分,前者是指有质量的中微子通过改变尺度因子的演化进而改变宇宙背景的演化,后者是指有质量的中微子对引力势扰动演化以及宇宙流体不同成分扰动演化的修改。

  我们先来看中微子质量对CMB各向异性谱的影响。中微子质量的变化将会由暗物质、暗能量、重子物质和哈勃参数的变化所补偿,这会直接导致最后散射时期声学视界、角直径距离,以及辐射物质相等时刻或者物质暗能量相等时刻等背景量的改变。除此外,这些改变还会影响引力势扰动的演化,以及CMB棱镜效应。因此会改变我们观测到的CMB谱的形状。

  再看中微子质量对物质功率谱的影响。在物质主导时期的宇宙,很小的尺度上开始非线性的演化并形成了我们今天所看到的宇宙的结构,而在大的尺度上,宇宙仍然是在线性的演化。在大尺度上中微子的自由流动可以忽略,并且中微子扰动同暗物质扰动也是不可区分的,因此中微子质量的变化不会影响大尺度上的标量物质功率谱。在小尺度上,由于中微子的自由流动,它不能被限制在自由流动的尺度内,当它变得非相对论后,有质量的中微子的扰动行为变得和暗物质扰动相同,但却不具有凝聚性,因此会对物质功率谱有一定的抑制作用,其次增加中微子的质量也会减小暗物质扰动的增长因子,也会对功率谱起到抑制作用。

  在任一宇宙学观测中,中微子质量参数都与其他宇宙学参数是简并的,未来更高精度的观测,能更好的限制宇宙学参数,同时多种观测的联合将进一步打破参数之间的简并性进一步提高对中微子质量的限制。

  结语

  中微子本身目前仍还存在许多疑团待探究,在现如今的实验和观测中,我们还不能得知中微子的绝对质量,甚至也无法得知是不是只有三代中微子,会不会出现第四代等,中微子的性质对我们认识了解宇宙有很关键的作用。在不远的未来,我国空间巡天望远镜的投入使用,将有望使我们能获得更多的有关中微子的信息。

  作者简介:苗海涛,中国科学院国家天文台博士后。

  编辑:赵宇豪

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 遵义会议精神:自伟大事件孕育而生

  • 今年秋粮增产已成定局

独家策划

推荐阅读
山西近三万古建筑文物中,被列为国家级、省级文物保护单位的不到3%。此次受暴雨灾害影响较为严重的,绝大部分为低级别和未定级文物。达到比较严重状况的有 750 处,其中 84%为市、县级“低保”和未定级不可移动文物。
2021-10-21 09:39
据英国剑桥大学官网19日报道,该校科学家在最新研究中再次发现,底夸克衰变成电子和缪子的频率并不相同,这违背了粒子物理学标准模型,为我们发现新物理学提供了佐证。实际上,今年3月,欧洲核子研究中心的科学家也发现了类似现象。
2021-10-21 09:46
记者近日从哈尔滨工业大学获悉,该校材料科学与工程学院周玉院士团队李保强教授课题组与浙江农林大学孙庆丰教授、李彩彩副教授等人首次将钌(Ru)与富含空位的碳点(CDs)结合,构建了钌/富空位碳点电催化剂(Ru@CDs),并揭示了强电子结合提高电催化析氢活性机制。该材料有效地拓宽了碳点的应用范围,为新型高效析氢电催化剂设计提供了新思路。
2021-10-21 09:44
在影像设备引导下,将两根电极针插入肝脏肿瘤边缘,通过瞬间发射数万伏高压脉冲,在细胞膜上进行穿孔,跨膜入核,使癌细胞迅速凋亡……10月14日,郑州大学第一附属医院(以下简称郑大一院)超声介入科主任董刚安全完成了第105台纳秒刀手术。
2021-10-21 09:44
“全球新一轮科技革命和产业革命深入推进,5G与工业互联网的加速融合将为经济发展注入新动能。”10月15日,在2021世界数字经济大会暨第十一届智博会主论坛上,中国工业互联网研究院院长鲁春丛发表主题演讲时如是说。
2021-10-21 09:41
随着信息科技的发展,“5G”时代的到来,网络与人们的生活息息相关。但网络在带来便利的同时,也存在不少陷阱与隐患。正在陕西西安举办的“2021国家网络安全宣传周”上,与会专家就如何筑牢网络安全防线,维护广大人民群众利益,各抒己见;参会的上百家相关企业,也带来不少先进技术和前沿产品,全力为智能时代保驾护航。
2021-10-21 09:41
英国《自然·通讯》杂志20日发表了一项细胞生物学最新成果,德国科学家在哺乳动物细胞中展开概念验证研究,发现在病毒表面帮助它们进入目标细胞的糖蛋白,可能促进了神经退行性疾病中蛋白聚合物的扩散。
2021-10-21 09:38
超导的核心原理是电子形成对。但它们也能凝聚成“四人组”吗?最新研究结果表明它们可以。瑞典物理学家20日在《自然·物理学》杂志发表了关于这种四倍效应和这种物质状态发生机制的第一个实验证据。
2021-10-21 09:37
通过破译免疫反应背后的细胞迁移机制,瑞士日内瓦大学(UNIGE)和德国慕尼黑大学(LMU)的科学家们已经证明,免疫系统的激活取决于时间并受到生物钟影响。
2021-10-21 09:37
中国工程院院士汤广福认为,随着新能源装机、电量占比不断提升带来的量变,将逐步引发电力系统在物理形态和技术框架上产生本质性变化,从而使得新型电力系统呈现出区别于传统电力系统的一些显著特征,可以概括为“四化”,即:电力电源清洁化、电力系统柔性化、电力系统数字化、电力系统电力电子化。
2021-10-21 09:36
继嵩山实验室、神农种业实验室后,河南第三家省实验室——黄河实验室,20日上午在郑州正式揭牌。河南省委书记楼阳生、省长王凯出席揭牌仪式。楼阳生指出,组建黄河实验室是落实重大国家战略的先遣之举,是加快经济转型升级的必由之路,是推动河南科技创新的重大举措,是探索体制机制创新的必然选择。
2021-10-21 09:35
目前,秋收已进入尾声,各地正在紧张有序地开展秋冬种。“全年粮食产量将再创历史新高,连续7年保持在1.3万亿斤以上。
2021-10-21 09:32
锁定重大产业方向,设立以头部企业为依托的开放创新平台,让他们在国家人工智能创新体系中发挥引领作用,是国家新一代人工智能开放创新平台设立的关键诉求。
2021-10-21 09:31
近日,浙江省向社会公布379项免费开放许可专利,企业无需缴纳任何费用就能使用这些专利,使用期限在1年到5年不等。此举是我国自去年修订《中华人民共和国专利法》后,在引入专利许可制度基础上的一次加码创新。
2021-10-21 09:30
)“九章”量子计算原型机,“嫦娥五号”和“奋斗者”号全海深载人潜水器等国之重器,VG70呼吸机等一批科技抗疫成果,国家速滑馆(冰丝带)和国家跳台滑雪中心模型……10月20日,记者从科技部获悉,以“创新驱动发展迈向科技强国”为主题的国家“十三五”科技创新成就展将于10月21日—27日在北京展览馆举行。
2021-10-21 09:28
时隔30年,最大真盔甲鱼类漫游憨鱼再次现身云南曲靖“古鱼王国”。10月20日,记者从中国科学院古脊椎动物与古人类研究所获悉,该所研究人员通过对4.2亿年前无颌类盔甲鱼漫游憨鱼新材料研究发现,漫游憨鱼具有与现生魔鬼鱼一样的腹面鳃孔,可能漫游于具有泥沙质基底的平坦海底,在安静滨海环境中,以滤食海底有机碎屑为生。
2021-10-21 09:28
当今世界,“不确定性”成为一种常态,伴随着此起彼伏的疫情,在这个瞬息万变的世界,身处竞争白热化家电行业的海信,究竟坚持了哪些“确定性”,从而实现了可持续增长?
2021-10-20 22:00
20日上午,从奥林匹克运动发祥地成功采集的奥运火种,在独具中国文化特色的火种灯的“护送”下顺利抵达北京,即将再一次在长城内外展示传递。北京冬奥会火炬设计者李剑叶表示,火种灯的造型灵感来自“中华第一灯”——西汉长信宫灯,借“长信”之义,表达人们对光明与希望的追求和向往。
2021-10-21 09:29
青藏高原多年冻土发生了显著退化,表现为地温升高、活动层厚度增大、多年冻土层厚度变薄、长期被埋藏的地下冰缓慢融化。
2021-10-20 09:32
加载更多