点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:是什么让栽培水稻变“野”了
首页> 科普频道> 三农科普> 三农看点 > 正文

是什么让栽培水稻变“野”了

来源:科技日报2020-04-21 10:03

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  栽培水稻发生返祖现象后会呈现出籽实变小、红皮的特征,经过环境适应进化,种子一成熟即散落田间,之后与栽培水稻伴生。这种山寨版的水稻被称为杂草稻,由于其遗传背景与栽培稻极其相似,因此除草剂难以根除,严重影响水稻生产。

  不久前,由浙江大学农业与生物技术学院樊龙江教授领衔的国际研究团队,通过对从涵盖各大洲16个主要水稻生产国稻区抽取的524份杂草稻样本进行研究,发现水稻在世界各稻区均存在返祖现象。

  水稻返祖现象源于繁衍之需

  返祖现象也称野化或去驯化,是生物界经常发生的一个遗传现象,指栽培作物和家养牲畜等从人工环境回归自然环境,恢复野生特征。

  研究团队通过基因组重测序,并结合已有当地栽培稻和野生稻基因组数据资源,在对样本群体遗传学分析后发现,全球稻区发生的杂草稻都来自栽培稻,而且这个去驯化过程是一个持续的过程。

  一般认为,水稻的起源历程,从野生经过驯化与现代遗传育种改良便结束了。因此有科学家认为杂草稻与栽培稻只是“近亲”,没有直接的血缘关系。但研究团队的这项最新研究使人类对作物发展的历史认知又向前推进了。

  樊龙江表示,每年收割水稻时都会有种子落粒,田里种子数量越多,进化出杂草稻的概率越大。因此,减少田间种子遗留的库容,是减少杂草稻的重要手段。

  为什么进化中会出现返祖现象?研究结果表明,这是适者生存的自然选择。随着人们对水稻高产的不断改良,谷粒变大且不易脱落的水稻便于收割增产提效。这一改良虽满足了人类需求,却改变了水稻的生存法则,使其原有的繁衍生存机制被破坏。

  “水稻的落粒特征,即种子成熟后回归土壤,是其繁衍生存的关键,是其在自然界生存最重要的机制。同时将种子变小,也是为了便于传播生长。”樊龙江解释道。

  凭借杂交优势和栽培稻“较劲”

  据了解,杂草稻在我国大面积存在,特别在江苏、广东、辽宁和宁夏等地,杂草稻已成为除稗草外影响我国稻田最严重的杂草。

  已有科学研究表明,杂草稻在有限的空间中与栽培稻开展竞争,争水分、争光照、争养料。杂草稻实力强劲的很大一部分原因,与其杂交起家的遗传背景有关。

  在这次调查中,科研人员发现全球特别是在南美稻区,有大量杂交起源的杂草稻,它们或是杂草稻之间或是杂草稻与栽培稻之间杂交形成。这种杂交,导致杂草稻同样获得了除草剂的抗性等。

  难以除净杂草稻的另一个原因就是从外形上很难将其与水稻区别开来。此外,在苗期杂草稻就与栽培稻“较劲”,抽穗之后还会率先成熟。

  樊龙江认为,水稻通过稻苗移栽能够很好地防控杂草稻。育秧让水稻苗已经长得很大,这样一来杂草稻不容易赶上新插的秧。“现在水稻种植大多采用直接播种,省时省力。缺点就在于给了杂草稻与栽培稻一起发芽的机会,相同的‘起跑线’是导致杂草稻越来越多的原因之一。”

  古老基因启发新型水稻育种

  杂草稻的危害性还来自其休眠特征——它在一定条件下能够度过田间冬季的严酷环境,直到稻季才发芽。

  “这样年复一年的结果就是杂草稻越来越多,终成大害。”樊龙江说,水稻长,它就长。“如果一块地闲置两年重新种植水稻,杂草稻又会‘复活’。”

  栽培稻从野生稻驯化而来,是人类对其基因的重新选择。而在去驯化的过程中,杂草稻发生了新的基因突变。研究人员对基因组选择信号分析发现,野化选择的区域与驯化选择的区域重叠率很低。

  研究团队发现全球不同地区杂草稻存在一个共同的强烈基因组分化区域,即7号染色体一个0.5Mb区间。

  该区域包括与种子休眠、抗性相关的基因等,对杂草稻的环境适应性非常重要。此外,休眠性相关基因经历平行进化,在粳型杂草稻和栽培稻间分化明显,可能在不同杂草稻群体野化过程中扮演重要角色。

  研究团队希望将杂草稻“发芽率高长势强”的优点应用到水稻育种当中,通过提高自然适应能力,为增产增收开辟新的思路。上述研究成果已发表于学术期刊《基因组生物学》。(江 耘)

 

[ 责编:张蕃 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 贵平高速公路通车在即

  • 西安:“大唐之旅”焕新升级

独家策划

推荐阅读
传统探查手段在如此深的地下几乎“失明”,无法精准捕捉地质特征。这项工程的成功实施,填补了我国超深埋输水隧洞注浆治理技术的空白,标志着我国在深埋地下工程地质探查与注浆治理领域达到国际领先水平。
2025-12-25 09:42
24日上午,随着最后一方混凝土浇筑完成,宁波舟山港六横公路大桥二期工程——青龙门特大桥双主塔成功封顶。青龙门特大桥位于浙江舟山,横跨青龙门水道,连接宁波梅山岛与舟山佛渡岛。
2025-12-25 09:45
24日,我国最大超深凝析气田——中国石油塔里木油田博孜—大北气田天然气年产量突破100亿立方米,生产凝析油91.89万吨。为攻克上述难题,塔里木油田持续攻关,推动气田开发实现从深层向超深层、从高压向超高压、从优质储层向复杂储层的三大跨越。
2025-12-25 09:44
前不久,“科学家预测恐龙复活有望实现”的话题冲上热搜,引起舆论关注。
2025-12-25 10:20
一项研究显示,科学家发现新物种的速度比以往任何时候都快——每年发现的新物种超过1.6万个,并且这一趋势没有放缓的迹象。除了医学,许多物种的适应特性还可以启发人类的发明创造,例如模仿壁虎垂直爬墙的“超强黏附”脚的材料。
2025-12-25 09:47
”这是中国科学院院士、北京航空航天大学研究生院原副院长高为炳生前在自述中留下的一句话。而在高为炳的学生看来,他之所以能在短时间内取得那么多成绩,根源就在于几十年的厚积薄发。
2025-12-25 09:46
昆虫性信息素相当于昆虫之间的“气味语言”,具有靶向性强、用量少、对环境友好等优点,是当前绿色植保的重要策略之一。
2025-12-24 10:05
作为中国科学院“十四五”重大项目之一,2022年7月27日,由中国科学院力学研究所(以下简称力学所)抓总研制的“力箭一号”火箭首飞成功。
2025-12-24 09:59
中国科学技术大学(以下简称中国科大)教授潘建伟、朱晓波、彭承志和副教授陈福升等基于超导量子处理器“祖冲之3.2号”,在码距为7的表面码上实现了低于纠错阈值的量子纠错,演示了逻辑错误率随码距增加而显著下降。
2025-12-24 09:58
为加快推进知识产权强国建设,日前,国家知识产权局会同有关部门编制完成《知识产权强国建设发展报告(2025年)》。
2025-12-24 09:57
国家能源局23日发布11月全国电动汽车充电设施数据。
2025-12-24 09:57
我国自主设计建造的全球首制甲醇双燃料动力智能超大型油轮“凯拓”轮22日在辽宁大连成功交付。
2025-12-23 09:54
中国科学院大连化学物理研究所副研究员方光宗、研究员潘秀莲团队在乙炔氢氯化制氯乙烯研究领域取得新进展。
2025-12-23 09:53
《自然》杂志网站12月18日刊发文章,展望了2026年值得关注的科学事件,涉及人工智能(AI)、基因编辑和太空探索等多个领域。中国计划于2026年发射嫦娥七号探测器,目标是在布满岩石与陨石坑、着陆难度极大的月球南极附近着陆。
2025-12-23 09:52
9月30日,中国科学院上海应用物理研究所原所长徐洪杰去世半个月后,一场以追思和战略研讨为主题的“务虚会”在研究所召开。
2025-12-23 09:47
种子是“农业芯片”。精准设计育种这盘大棋,在科技工作者手中,正下得风生水起。
2025-12-23 03:05
12月17日,《自然》发布2025年值得关注的七大暖心科学故事,从基因编辑的多项突破,到传染病的快速防控,再到政策层面的重大胜利,都让人们为这一年感到高兴。
2025-12-22 09:57
记者21日从中国科学院大连化学物理研究所获悉,该所研究员李先锋团队在溴基多电子转移液流电池新体系研究方面取得新进展。
2025-12-22 09:56
微波加热,是维持“人造太阳”——全超导托卡马克核聚变实验装置(EAST)上亿摄氏度高温的核心技术之一。
2025-12-22 09:52
12月19日,《科学》在线发表了这项由中国科学家领衔的重要研究成果。
2025-12-22 09:50
加载更多