点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:【锚定2035·院士谈科学报国】单原子催化:探索催化科学的微观世界
首页> 光明科普> 图文 > 正文

【锚定2035·院士谈科学报国】单原子催化:探索催化科学的微观世界

来源:光明网2024-11-13 11:20

  编者按:习近平总书记指出,科学普及是实现创新发展的重要基础性工作。为助力高水平科技自立自强,中国科协科普部联合光明网推出“锚定2035·院士谈科学报国”系列文章,邀请各领域院士就我国当下热点科技问题给予权威解答,服务引导更多科技工作者提升科研科普能力,促进全民科学素质提升,为科技强国建设贡献科普力量。#千万IP创科普

  催化,这个听起来有些抽象的词汇,实际上在我们的日常生活中无处不在。从古老的酿酒发酵,到现代的石油化工,催化都扮演着至关重要的角色。简单来说,催化是一种加速化学反应的过程,而催化剂则是实现这一过程的关键物质。

  催化剂的工作原理,可以通过一个简单的比喻来理解。想象你正在爬山,如果山路陡峭,你可能会感到吃力。但如果在山腰上挖一条隧道,你就能轻松地穿过山体。催化剂就像这条隧道,它通过改变反应路径,降低了化学反应的活化能,使得反应更容易进行。

【锚定2035·院士谈科学报国】单原子催化:探索催化科学的微观世界

  催化不仅在日常生活中有广泛应用,更是现代化学工业的核心。例如,1918年获得诺贝尔奖的哈伯-博施法合成了氨,这一成就使得化肥的大规模生产成为可能,从而解决了全球粮食短缺的问题。再比如,1963年齐格勒-纳塔催化技术的发明,推动了聚合反应的发展,为塑料、合成纤维等材料的生产提供了可能。

  然而,很多工业催化剂需要使用贵金属,如铂、钯等,这些金属资源稀缺且价格昂贵。以航天飞行器所用的催化剂为例,其中所含的铱金属比黄金还要贵重。因此,降低催化剂中贵金属的含量,成为一个亟待解决的问题。

  在思考这个问题时,我们不禁要问:催化剂中的每一个原子都在发挥作用吗?事实上,即使是纳米级的催化剂颗粒,其内部的原子也并未被充分利用。那么,有没有可能将催化剂中的金属原子进一步分散,甚至达到单个原子的水平呢?

  正是基于这样的思考,我们提出了单原子催化的概念。单原子催化,顾名思义,就是将单个金属原子分散在载体上,形成单原子催化剂。这种催化剂不仅极大地提高了贵金属的利用率,还因为单个原子的独特性质,展现出了优异的催化性能。

  单原子催化的概念虽然简单,但实现起来却充满了挑战。首先,我们需要找到一种方法,将金属原子稳定地分散在载体上,防止它们聚集形成纳米颗粒。为此,我们尝试了多种策略,包括使用特殊的配体与金属原子结合,以及通过控制合成条件来优化催化剂的结构。

  经过数年的努力,我们终于在2011年首次成功制备出了单原子铂催化剂。这一成果发表在了《自然-化学》杂志上,引起了国际学术界的广泛关注。随后,我们团队和其他科研团队一起,不断探索和拓展单原子催化的研究领域,目前已有五十多种单原子催化剂被报道,涵盖了从贵金属到过渡金属,再到稀土元素等多个元素周期表的区域。

【锚定2035·院士谈科学报国】单原子催化:探索催化科学的微观世界

  单原子催化的研究并非一帆风顺。在实际应用中,我们发现单原子催化剂的稳定性是一个重要的问题。在高温或高压等苛刻条件下,单原子很容易发生聚集或迁移,导致催化剂失活。因此,如何提高单原子催化剂的稳定性,成为我们当前研究的一个重要方向。

  尽管面临诸多挑战,但单原子催化的应用前景依然广阔。在环境催化方面,单原子催化剂展现出了优异的污染物降解性能,有望在未来的环境治理中发挥重要作用。在能源催化方面,单原子催化剂可以提高燃料电池和电解水等能源转换过程的效率,为清洁能源的发展提供有力支持。

  此外,单原子催化还在生物医药、材料科学等领域展现出了潜在的应用价值。例如,在生物医药领域,单原子催化剂可以用于合成具有特定生物活性的小分子药物;在材料科学领域,单原子催化剂可以用于调控材料的表面性质和电子结构,从而制备出具有优异性能的新材料。

  值得一提的是,近年来人工智能技术的快速发展为单原子催化的研究提供了新的机遇。通过大数据和机器学习算法,我们可以对单原子催化剂的结构和性能进行精准预测和优化设计,从而大大加速新催化剂的开发进程。

  例如,我们可以利用机器学习算法对大量实验数据进行挖掘和分析,找出影响单原子催化剂性能的关键因素;然后,通过模拟计算来预测不同结构催化剂的性能表现;最后,根据预测结果指导实验合成和优化催化剂的性能。这种“实验-计算一再实验”的循环迭代模式,使得单原子催化的研究更加高效和精准。

  回顾我在单原子催化领域的研究经历,我深刻体会到科研工作的艰辛与乐趣。每一次实验的失败都是对意志的考验,而每一次成功的发现都是对智慧的奖赏。单原子催化的研究涉及多个学科和领域的交叉融合,需要不同背景的科研人员共同努力才能取得突破。因此,我始终强调团队合作和跨学科交流的重要性,鼓励年轻科研人员积极参与到这一充满挑战和机遇的研究领域中来。

  科研之路虽然漫长且充满未知,但只要我们保持对科学的热爱和好奇心,勇于探索和创新,就一定能够在科研的道路上走得更远、飞得更高。希望大家能够珍惜这个伟大的时代赋予我们的机遇和责任,为推动科学进步和社会发展贡献自己的力量。

  (文章系中国科学院院士、中国科学院大连化学物理研究所研究员、2024未来科学大奖“物质科学奖”获奖者之一张涛在“科学点燃青春”的青少年对话中的分享,光明网记者宋雅娟整理)

【锚定2035·院士谈科学报国】单原子催化:探索催化科学的微观世界 

【锚定2035·院士谈科学报国】单原子催化:探索催化科学的微观世界

[ 责编:肖春芳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 无人机灯光秀闪耀重庆夜空

  • 江苏南京:逛灯市 寻年味

独家策划

推荐阅读
莱州中华武校第十次登上央视春晚舞台
2026-02-17 10:21
近日,一个名为Moltbook的社交平台突然走红。与普通网络平台不同的是,Moltbook上的用户都是AI智能体。
2026-02-14 09:21
全球规模最大的200万吨/年柴油吸附分离装置目前在中国石油广西石化稳定运行。
2026-02-14 09:16
大连理工大学赵珺教授带领师生团队正抓紧时间,为实现可重复使用运载火箭关键部件的“复用检测”技术突破全力冲刺。
2026-02-14 09:12
一场刷新人类对宇宙极端物理过程认知的高能事件,被中国科学卫星清晰捕获并成功解读。
2026-02-14 09:11
近日,中国计量科学研究院研制的锶原子光晶格钟NIM-Sr1正式获准校准国际标准时间,实现了我国光钟参与校准国际标准时间“零”的突破。
2026-02-14 09:10
装上智能仿生手,截肢患者可以轻松拿起水杯喝水;高位截瘫患者用意念移动电脑光标,操控轮椅,指挥机器狗取外卖……
2026-02-13 09:50
凌晨2时,南昌西动车组运用一所检修库内灯光如昼。“接触网已断电,安全措施准备完毕,申请登顶!”确认许可后,国铁南昌局电务段南昌西车载设备车间工长曹准与工友一前一后登上动车组车顶,对北斗天线进行全面“体检”。
2026-02-13 09:45
近日,广西涠洲岛海域发生渔船撞击布氏鲸事件,鲸鱼受伤的画面令人揪心。虽然撞鲸的并非观鲸船,但这起事件也给正处于旺季的观鲸游敲响警钟——负责任地观鲸,有边界地亲近,人与自然和谐共生图景才能真正长久。
2026-02-13 09:43
核光钟通过真空紫外激光诱导原子核跃迁,具备更高精度与强抗干扰能力,且可实现便携化应用。但研制核光钟的道路上的一个核心瓶颈,是无法研制出能激发核跃迁的连续波激光光源。
2026-02-13 09:42
2021年,王勤团队开始研发低成本、适用于牧场环境的马匹体形自动测定设备。王勤团队搜集了全球90个马群体、近40个品种的基因组信息,构建了包含2000多个个体的参考面板——这是目前全球规模最大的马基因组参考数据库。
2026-02-13 09:36
一纸锦旗山水间,杏林春暖绿意长。
2026-02-12 11:01
金星与地球大小相近,同样诞生于太阳系内侧,却有着截然不同的命运。
2026-02-12 09:41
科技部十司相关负责同志解读《调查处理规定》。
2026-02-12 09:38
《细胞》封面:猕猴屏状核细胞分类与全脑联接图谱。在当前脑图谱大科学计划研究目标迈进绘制非人灵长类介观脑图谱的关键阶段,中国科学家仍在进一步集聚全球力量,持续扩大“朋友圈”。
2026-02-12 09:25
据悉,在战略上,植物星球计划还将整体提升全球生物多样性保护和实现碳中和的生态能力,构建植物科学领域全球大科学命题国际合作的新格局。
2026-02-12 09:17
马年将至,作为一种兼具力量与速度的动物,马正受到格外的关注。
2026-02-12 09:12
工业和信息化部等五部门近日印发《关于加强信息通信业能力建设支撑低空基础设施发展的实施意见》。加强监管能力体系建设,规划无人机专用号段,推动“一机一码一号”能力建设,探索标识解析在无人机领域的应用,形成无人机通信资源精细化管理。
2026-02-11 09:25
全球森林逐渐被快生树木主导,而稳定生态系统的慢生树种正在消失。“我们关注的是极为独特的物种,它们主要集中在生物多样性丰富、生态系统联系紧密的热带和亚热带地区。“此外,在现在和未来受到干扰的地区,非本地物种可能会加剧对光、水和养分的竞争,从而使本地树木更难生存。
2026-02-11 09:32
中国科学院动物研究所研究员王红梅带领的“灵长类胚胎发育的规律解析与体外模拟团队”,用27年的接力攻坚,把灵长类早期胚胎发育这个看不见、摸不着的“黑匣子”,变成了清晰可见的“生命剧本”。
2026-02-11 09:32
加载更多