点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:恒星耀发——浩瀚星空里的磁能释放
首页> 科普频道> 天文前沿 > 正文

恒星耀发——浩瀚星空里的磁能释放

来源:光明网2021-08-18 11:22

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  我们的太阳每天都发光发热,哺育着地球上的万物生长,可以说太阳就是地球上一切生命之源,万物生长靠太阳[1]。

  看似和蔼可亲的太阳,和人一样,当内部“压力”积累到一定程度之后,有时候也会偶尔发发脾气,需要释放。人类感情的宣泄,往往是由于长时间精神压力的积累;而太阳发脾气则是由于太阳大气中磁场能量积累到一定程度的的结果。

  这种“脾气”,首先由两位英国天文学家Richard Carrington[2]和Richard Hodgson[3]在1859年发生的一次巨大太阳爆发中观测到。这两位“同名”先生几乎在同一时间在距离不到几十英里的自家天文台里,看到了太阳的光学辐射有显著增强,见图1,史称“卡林顿事件(Carrington Event)”。这种增强被太阳物理学家称为“flare”,中国内地太阳物理学界译为“耀斑”,而中国台湾太阳物理学者则译为“闪焰”。

恒星耀发——浩瀚星空里的磁能释放

图1. 卡林顿在自家天文台上观测到的太阳辐射增强(图源:Carrington R. C., 1859, MNRAS, 20, 13)

  这次太阳爆发一并产生了很多地球物理事件(在当时还不能科学的认识到两者的物理关联)。事件发生时,正值我国清代咸丰九年,当时疲弱的清政府正处在太平天国运动和第二次鸦片战争交织的内忧外患中无法自拔,但是即便如此,我们感谢认真负责的地方官员,使我们能从地方志中看到一些端倪。如果读者对卡林顿事件(Carrington Event)感兴趣,欢迎您关注我们后续的详细介绍。

  早期对太阳耀斑的知识主要来源于地面望远镜光学波段的观测,但是随着观测仪器的不断进步,现在人们已经用高时间分辨率,高空间分辨率,全波段高能谱分辨率,抵近的观测设备对耀斑进行非常细致的观测[4,5]。尤其是对耀斑最敏感的软X射线波段,GOES卫星在几个太阳活动周内积累了大量的耀斑样本,为耀斑的研究提供了方便。一个经典的太阳耀斑轮廓见图2。

恒星耀发——浩瀚星空里的磁能释放

图2. 2006年12月13日GOES卫星观测到的一次X级耀斑的光变轮廓(图源:SWPC/NOAA http://www.swpc.noaa.gov)

  太阳能发脾气,那漫天璀璨的星星是否也能发脾气呢?答案是肯定的,最早研究变星的恒星天文学家发现了此中玄机。在上世纪二三十年代,对高自行矮星的观测中,发现一些谱线具有强烈的变化。随后在一系列恒星的氢发射线中也发现了这种现象。然而直到1948年,来自威尔逊山天文台的天文学家对其中一颗高自行双星[6]的一次短时标快速光变进行了定量研究,才真正拉开了恒星耀发研究的序幕。

  如今,这颗著名的恒星被称作鲸鱼座UV变星(UVCeti)[7], 之后的观测揭示出其在诸多波段上也同时存在快速变化,从而逐渐认识到其与太阳耀斑存在某种关联。因此,恒星的这种光变也被称做“flare”,但是由于对恒星缺少成像观测,恒星天文学家一般翻译成“耀发”。在接下来对恒星耀发进行地面观测的几十年里,观测到的样本多是M型矮星的耀发。由于M矮星本身光度低,所以一旦发生耀发,就易于在光变轮廓中辨认出来。

  随着观测样本的逐渐增多,一个用来比较太阳和恒星磁场活动的研究方向——日星联系(solar-stellar connection)也逐渐成为热点[8]。一个很自然的想法,就是想比较一下太阳和与它长得像的恒星(类太阳恒星)在发脾气(耀发)的方式上有什么异同。然而在地面观测的几十年里,类太阳恒星的耀发样本非常少,难以进行较为有效的统计研究。

  2009年,随着Kepler空间望远镜升空,一切有了明显改观。Kepler望远镜起初设计的主要科学目标是通过对恒星光变曲线的分析,通过凌星法实现对系外行星的搜寻[9]。Kepler是一个时域天文学的观测利器,对同一个天区进行连续观测, 见图3。科研数据产品分为long-cadence(低频采样数据,30分钟一次采样)和short-cadence(高频采样数据,1分钟一次采样)两种。

恒星耀发——浩瀚星空里的磁能释放

图3. Kepler空间望远镜与Kepler 观测天区(图源:NASA http://www.nasa.gov)

  最近,国家天文台闫岩博士、贺晗研究员等人发表在英国《皇家天文学会月刊:快报》上的一篇论文(MNRAS: Letters, 2021, 505, L79-L83)就是基于Kepler高频采样数据,对恒星耀发光变轮廓的精细结构进行研究,从而揭示出类太阳恒星耀发的特征时间[10]。

  太阳耀斑的光变轮廓呈现比较明显的先升-后降的特征,在耀斑研究者的术语里,这种两段式特征被分为“上升相”和“下降相”。本文的通讯作者、领导此项研究的贺晗研究员解释说:“一般来说,耀斑的上升相代表了太阳磁场能量通过磁重联过程快速释放的过程,而其下降相则代表了耀斑源区的逐渐冷却过程。因而,耀斑的上升相和下降相的特征时标,对耀斑研究具有非常重要的物理意义。”通过对Kepler数据的分析,我们发现恒星耀发也存在明显的先升-后降特征,如图4所示,为我们后续进行比较研究提供了很好的样本。

恒星耀发——浩瀚星空里的磁能释放

图4. 发生在KIC 4543412恒星上一次耀发的经典光变轮廓(图源:Yan Y. et al., 2021, MNRAS, 505, L79)

  那么,如何选取样本呢?首先,需要找出和太阳长得像的恒星来。在这个研究中,我们采用了三个恒星物理中比较成熟的参数来界定,分别是有效温度、对数化的表面重力加速度和单星属性。太阳的有效温度约为5800K,对数化表面重力加速度约为4.4。我们找到了20颗与太阳长得很像的耀发恒星,并在其光变轮廓中找到了184个耀发样本。

  闫岩博士说:“通过对样本的统计分析,我们得出类太阳恒星耀发的上升相和下降相的时间的中位数分别为5.9分钟和22.6分钟,这和太阳耀斑的结果非常相似。因此,我们可以这样说,类太阳恒星不仅和太阳长得像,连一颦(上升相)一笑(下降相)的调调也那么像,所以,它们应该具有相同的物理机制。”恒星耀发,正是浩瀚星空发生的剧烈磁能释放。

  通过进一步研究,我们发现上升相和下降相的分布规律都具有明显的尖峰-长尾特征,符合统计学里的对数正态分布[11],置信水平达到0.95,如图5所示。

恒星耀发——浩瀚星空里的磁能释放

图5. 左侧为耀发样本上升相时间和下降相时间的对数正态分布图,右侧为上升相时间和下降相时间各自取对数后的正态分布图(图源:Yan Y. et al., 2021, MNRAS, 505, L79)

  “类太阳恒星耀发上升相和下降相的分布都符合对数正态分布,这个结论会让我们把它当做研究其它类型恒星耀发特征时间的基准,从而看看其它类型的恒星在耀发行为上是否也和类太阳恒星差不多。”贺晗研究员评论说。

  在太阳系中,太阳耀斑是空间天气的源。就耀斑本身来说,它可以影响到地球的空间环境,增加地球上层大气的电离度,从而影响到短波通讯或者低轨卫星的稳定性。而对于系外的恒星-行星系统来说,宿主恒星耀发产生的高能辐射也同样会参与系外行星大气的演化过程。

  恒星耀发中产生的紫外辐射通量变化会对系统内的行星大气产生作用,进而影响到系外行星的宜居性问题。因此,通过对恒星耀发特征时间的研究,有助于我们为将来的星际移民做好准备。

  在某次关于太阳-恒星物理的学术讨论会上,紫金山天文台的熊大闰院士曾经说:“对于太阳来说,我们得到的是丰富的、细致的耀斑样本;然而对于恒星来说,我们获取的是各种不同类型恒星的耀发信息。”

  把时光放回到160多年前,Richard Carrington在他对太阳耀斑具有奠基性意义的论文里,文末引用了源自古希腊著名哲人亚里士多德的名言:“One swallow does not make a summer (一燕不成夏).”在当时那个年代,他已经隐约估计到了太阳耀斑发现的重要意义。

  160多年后的今天,我们从大量恒星耀发的样本中,可以更自信地用《增广贤文》里的名句来表达我们对恒星耀发研究的期待:“一花独放不是春,万紫千红春满园”。

  参考文献:

  [1] 谭宝林,《太阳之美:一颗恒星的过去、现在和未来》,天津科学技术出版社,2019年,天津

  [2] Carrington R. C., 1859, MNRAS, 20, 13

  [3] Hodgson R., 1859, MNRAS, 20, 15

  [4] 方成、丁明德、陈鹏飞,《太阳活动区物理》,南京大学出版社,2008年,南京

  [5] 涂传诒、宗秋刚、何建森、田晖、王玲华,《日地空间物理学(第二版)上册:日球层物理》,科学出版社,2020年,北京

  [6] Joy, A.H. & Humason, M.H., 1949, PASP, 61, 133

  [7] 苏宜,《天文学新概论(第五版)》,科学出版社,2019年,北京

  [8] Brun A. S., Browning M. K., 2017, Living Rev. Sol. Phys., 14, 4

  [9] Borucki W. J. et al., 2010, Science, 327, 977

  [10] Yan Y. et al., 2021, MNRAS, 505, L79

  [11] Weisstein, Eric W. "LogNormal Distribution." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LogNormalDistribution.html

  作者:闫岩

  文稿编辑:赵宇豪

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 第七届上海国际艺术品交易周举行

  • 扎根山村的“姐妹花”

独家策划

推荐阅读
以“智跃无界,开源致远”为主题的操作系统大会2025(以下简称“大会”)在北京举办。
2025-11-14 17:08
我国在4个国家开展6处文物古迹保护修复,49项中外联合考古项目涉及28个国家和地区,用实际行动践行全球文明倡议、不断丰富世界文明百花园。
2025-11-13 07:07
由四川省人民政府主办的2025世界动力电池大会12日在宜宾市开幕。
2025-11-13 04:55
据估算,太阳每秒钟释放的能量,可供全人类使用约70万年。模拟太阳来产生无尽的清洁能源,也因此成为人类的“终极能源梦想”。
2025-11-13 04:55
日前,中国科学院合肥物质科学研究院智能机械研究所、中科合肥智能育种加速器创新研究院联合发布重要成果:全链条机器人育种家“小海”与“海霸设施”小麦快速育种商业化服务平台同步启动,标志着我国在智能育种装备与工程化应用上取得关键突破。
2025-11-13 04:55
日前,记者从全球规模最大的恐龙蛋化石遗址——湖北青龙山恐龙蛋化石群国家级自然保护区获悉,数字化档案建设团队正为库藏的每一枚较完整恐龙蛋化石,赋予由“保护区名称—化石产地名称—库藏箱编号—标本编号”构成的唯一“身份证ID”。这标志着该保护区首次实现恐龙蛋化石专属标识管理。
2025-11-13 04:55
困扰无数人的睡眠问题,终于有一部纪录片说清楚了!
2025-11-13 08:55
国家卫生健康委百万减残工程专家委员会主任委员、中国医学科学院北京协和医学院院校长吉训明介绍,目前,全国已有20个省份成立减残工程专委会,8个省份正在积极推进。
2025-11-12 07:24
2025年是中国科学院院士、我国理论物理学奠基人、“两弹一星功勋奖章”获得者彭桓武诞辰110周年。
2025-11-12 07:23
由中国科学院昆明动物研究所牵头,联合国内外多家科研机构组成的研究团队,通过对现存及灭绝长臂猿的大规模基因组测序与比较分析,系统阐明了长臂猿科的演化历程、种群动态及其标志性长臂表型的遗传基础,为全球长臂猿的保护行动提供了新的科学见解,相关研究成果日前发表于国际学术期刊《细胞》。
2025-11-12 05:10
11月11日,长征八号甲遥五运载火箭在海南商业航天发射场成功实施转运,计划择期发射。
2025-11-12 05:10
近日,中核集团中国原子能科学研究院主导建设的量子放射性计量实验室及电离辐射计量级设备“一线多用”产研平台正式投入运行,成功填补我国在低温量子磁量热计领域的空白。
2025-11-12 05:10
在数据管理与使用方面,《实施方案》提出,实行物流公共数据分类分级管理,规范开展数据授权运营,扩大路网、轨迹、企业、人员等关键数据供给。
2025-11-11 10:03
中国科协日前发布的《中国科技期刊发展蓝皮书(2025)》显示,我国科技期刊总量持续增加,从2023年的5211种提升至2024年的5325种,整体影响力稳步提升。
2025-11-11 10:04
空天地一体化网络作为国家信息化的重要基础设施,其战略意义远超普通通信技术范畴,它不仅是我国实现信息全球覆盖、自主创新的必由之路,更是在数字时代掌握发展主动权的关键布局。
2025-11-11 10:02
拔尖创新人才培养不是考验瞬间爆发力的短跑,而是需要长期持久力的马拉松。 在课程体系搭建上,北航实验学校打造了“五级阶梯式”科技创新人才贯通培养课程群,实现从基础普及到进阶的无缝衔接。
2025-11-11 10:00
日前,国务院办公厅印发《关于加快场景培育和开放推动新场景大规模应用的实施意见》(以下简称《意见》),对相关工作作出部署。
2025-11-11 09:50
11月9日,国航C919重飞“两航起义”航线主题航班从香港飞抵天津,重温76年前“两航起义”的北飞航程,致敬“两航起义”爱国壮举。“两航”后代陈绍曾介绍,76年前,“两航起义”飞行员从香港驾驶12架飞机飞抵北京、天津,建设新中国民航事业。
2025-11-10 10:10
“超级细菌”指那些对多种抗生素具有耐药性的细菌。研究人员在一种常用药物的生产流程中意外发现一种很有前景的强效抗生素,能够杀死耐甲氧西林金黄色葡萄球菌等“超级细菌”。
2025-11-10 10:09
11月9日,2025年世界互联网大会乌镇峰会在浙江乌镇闭幕。世界互联网大会秘书长任贤良用“聚焦构建网络空间命运共同体理念”“关注创新发展热点议题”“不断擦亮峰会品牌”“持续贡献智慧力量”概括了本届峰会的特点。
2025-11-10 10:08
加载更多