点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:如何三维立体探测太阳?
首页> 科普频道> 天文前沿 > 正文

如何三维立体探测太阳?

来源:光明网2021-08-17 11:39

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  常言道“万物生长靠太阳”,可以说,地球上的一切能源都是直接或间接的来源于太阳。人类的进步离不开太阳,太阳造福着人类,而太阳的剧烈活动也可能给人类带来灾难,对航天器、导航、通信、长距离电力输送等都有严重的影响。

  太阳活动最主要的表现为耀斑和日冕物质抛射,本质为太阳磁场变化而引起的能量释放、物质团迅速运动、高能粒子发射和相应的辐射增强。为了能够很好的理解太阳辐射,为空间活动提供预报预警,就需要对太阳进行三维探测。

  射电爆发是这些太阳剧烈活动的即时反应,能够无缝隙地提供太阳扰动在整个日地范围内信息。因此在无线电波段进行射电观测是研究太阳活动及其对日地空间环境影响的一个十分重要的手段。

如何三维立体探测太阳?

图1. 不同观测频率对应的太阳空间分布(图源:颜毅华)

  太阳及其喷射出的物质,填充了整个太阳系,涵盖了从太阳表面到地球附近,甚至整个太阳系空间。上图表明了在不同观测频率下观测到太阳的不同部分。在不同频率下相当于观测到了太阳不同的层次,类似于去剥一个“洋葱”,频率越低,观测的层次约靠外,频率越高,约接近太阳表面,直到可见光波段,看到太阳光球层,也就是大家肉眼可见的太阳。为了能够在三维上对太阳进行解析,构建数字化太阳,就必须在射电波段进行探测。

  在从日心向外的方向上,可以利用不同的射电频率观测,综合其不同的层次得到完成的太阳数据。在日地连线的方向上,需要采用干涉成像的方法来得到两维的射电图像。一般的射电望远镜的空间分辨率可以近似表述为:1.22λ/D,其中λ为观测波长,D为望远镜口径。因为射电波段的波长远远大于光学波段,单一的大口径天线也无法得到较好的空间分辨。

  因此,一般会采用综合孔径成像的方法来实现,通过测量太阳信号到达各个天线的相位差来反求太阳亮度分布,专门对太阳观测的射电干涉阵列也称之为“射电日像仪”。关于太阳射电探测技术的内容可见《太阳射电天文学的观测技术》(陈林杰),《太阳射电成像的数字相关器》(刘飞)。

  与其它的射电源不同,太阳辐射具有一些独特之处,使得射电日像仪系统有着独特的设计要求。

  信号的快变性,信号的变化时标最快可达毫秒级。要求成像观测只能工作在快照模式,无法通过长时间积分提高信噪比;还要求同时多频率通道探测,实现类似于“CT”般的成像观测。

  展源特性,太阳大概是个32角分的面源,根据单口径天线视场公式,为了罩住全日面,天线口径不能太大。例如日本野边山日像仪的口径仅为80cm。

  信号的大动态性。不同频率下,太阳的信号动态范围很大,例如在厘米分米波段,要求接收系统的动态范围大于30dB。

  中科院国家天文台在明安图观测基地建立的明安图射电频日像仪(MUSER),就是可以实现太阳三维立体探测的一个射电成像望远镜,具备快速多通道对太阳的二维成像观测能力。

如何三维立体探测太阳?

图2. 明安图射电频谱日像仪(MUSER)(图源:颜毅华 摄)

  由射电日像仪获得太阳观测二维图像后,对这些不同频率的分层图像进行处理与三维(3D)重构,对二维图像中的特征点搜索,直观展现太阳不同高度层,给出有效的科学数据展现办法,实现太阳三维立体空间展示。

如何三维立体探测太阳?

图3. MUSER多通道观测的太阳爆发(图源:Chen, Yan, Tan, et al.ApJ, 2019)

  作者简介:王威,中国科学院国家天文台高级工程,明安图观测基地站长,主要研究方向为射电望远镜校准方法,射电天文数据处理和图像处理方法等。

  文稿编辑:赵宇豪、柒柒

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 习近平春节前夕慰问部队

独家策划

推荐阅读
工业和信息化部等五部门近日印发《关于加强信息通信业能力建设支撑低空基础设施发展的实施意见》。加强监管能力体系建设,规划无人机专用号段,推动“一机一码一号”能力建设,探索标识解析在无人机领域的应用,形成无人机通信资源精细化管理。
2026-02-11 09:25
全球森林逐渐被快生树木主导,而稳定生态系统的慢生树种正在消失。“我们关注的是极为独特的物种,它们主要集中在生物多样性丰富、生态系统联系紧密的热带和亚热带地区。“此外,在现在和未来受到干扰的地区,非本地物种可能会加剧对光、水和养分的竞争,从而使本地树木更难生存。
2026-02-11 09:32
中国科学院动物研究所研究员王红梅带领的“灵长类胚胎发育的规律解析与体外模拟团队”,用27年的接力攻坚,把灵长类早期胚胎发育这个看不见、摸不着的“黑匣子”,变成了清晰可见的“生命剧本”。
2026-02-11 09:32
截至1月28日,“横竖都是世界第一”的贵州花江峡谷大桥累计接待游客突破130万人次,通行车辆超20万辆次,持续为区域发展注入新动能。大桥带来的发展溢出效应令人瞩目,而深入大桥肌理探查,你会发现,支撑起这座庞然大物的每根细钢丝,全部都是“中国造”。
2026-02-11 09:31
针对常见的饮食误区,杨爱明特别提醒,不建议采用“不吃主食”或“用水果代替主食”的方法来控制体重。对于肠胃功能较弱的人群,应避免过冷、过烫、过辣、过咸食物的刺激,切忌暴饮暴食,并尽量保持规律的进餐时间,以防加重原有胃肠问题。
2026-02-11 09:24
近日,市场监管总局(国家标准委)批准发布《中医体质分类与判定》推荐性国家标准。
2026-02-10 09:44
聚集相关企业300余家,机器人产业链规模超百亿元……北京亦庄,为何扎堆这么多机器人企业?
2026-02-10 09:42
“十四五”时期,我国全社会研发经费投入年均增长10%,研发经费投入强度提高0.44个百分点。
2026-02-10 09:41
日前,我科研团队在国际学术期刊《科学》发表论文《多尺度泛基因组图谱赋能混合倍性甘蔗的基因组解析》,为甘蔗高产优质育种提供了全新“基因资源地图”与核心分析工具。
2026-02-10 09:34
日前,南海区域海-气双向耦合智能大模型“飞鱼-1.0”在广东广州正式发布。“
2026-02-10 09:33
蓝天、绿林、碧水、清波……冬日的广东东莞松山湖科学城,温暖、惬意。
2026-02-09 10:00
这声呼唤,穿越漫长岁月,凝结着人类对这位地球近邻永恒的好奇与梦想。而今,随着新一轮探月热潮在全球兴起,这句“去月球”已不再仅仅是浪漫的诗意表达,更成为科技前沿竞相追逐、国家实力与创新精神交汇的生动实践。
2026-02-09 09:57
特种机器人技术与数智系统创新团队成员张平点击一键启动指令后,雷达驱动、定位算法、规划与控制算法等模块被加载。在系统支持下,无人机能够精准定位、自主导航与实时避障,像一位不知疲倦的巡检员。
2026-02-09 09:53
深耕西南高原山区二十余载,于富强与真菌为伴,在种质资源保护与产业富民之间架起桥梁,把论文写进泥土中,把科研做进农户的大棚里。3年间,于富强往返昆明与水城数十趟,硬是帮着水城从零起步,建成了食用菌研究所、日产50万袋的菌种厂和鲜菇冷链物流集散中心。
2026-02-09 09:53
研究团队将这一环境效应与黑洞双星轨道偏心率的演化同时纳入统一模型,并将理论预测与北美纳赫兹引力波天文台合作组15年的观测数据进行对比分析。陈一帆表示,尽管当前的不确定性仍然较大,但该研究已经表明,引力波观测开始携带关于星系中心环境的可测信息。
2026-02-09 09:53
近日,国家管网集团西部管道公司成功完成所辖新疆段天然气、原油、成品油管道输送全生命周期碳足迹核算,获得中国质量认证中心颁发的“产品碳足迹证书”。
2026-02-06 09:18
近日,中国农业科学院蔬菜花卉研究所蔬菜分子设计育种创新团队研发出新型植物基因研究工具——对目标DNA序列的邻近空间蛋白标记系统。
2026-02-06 09:38
因为像了解自己的孩子一样了解黑土地,韩晓增有个外号——“黑土地的营养搭配师”。他带领团队精心配制出一套营养搭配的“秘方”。
2026-02-06 09:33
蚊种与病毒之间存在高度匹配关系。1901年,公共卫生与热带医学领域先驱沃尔特·里德证明,蚊子是传播黄热病的元凶。科学界传统观点认为,病毒以颗粒形式在蚊子体内传播,却始终不知道真正的“病毒受体”是什么。
2026-02-06 09:31
科技创新和产业创新的深度融合,不仅是构建现代化产业体系的战略举措,更是贯彻新发展理念、推动高质量发展、加快构建新发展格局的重要抓手。
2026-02-06 09:13
加载更多