点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:如何三维立体探测太阳?
首页> 科普频道> 天文前沿 > 正文

如何三维立体探测太阳?

来源:光明网2021-08-17 11:39

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  常言道“万物生长靠太阳”,可以说,地球上的一切能源都是直接或间接的来源于太阳。人类的进步离不开太阳,太阳造福着人类,而太阳的剧烈活动也可能给人类带来灾难,对航天器、导航、通信、长距离电力输送等都有严重的影响。

  太阳活动最主要的表现为耀斑和日冕物质抛射,本质为太阳磁场变化而引起的能量释放、物质团迅速运动、高能粒子发射和相应的辐射增强。为了能够很好的理解太阳辐射,为空间活动提供预报预警,就需要对太阳进行三维探测。

  射电爆发是这些太阳剧烈活动的即时反应,能够无缝隙地提供太阳扰动在整个日地范围内信息。因此在无线电波段进行射电观测是研究太阳活动及其对日地空间环境影响的一个十分重要的手段。

如何三维立体探测太阳?

图1. 不同观测频率对应的太阳空间分布(图源:颜毅华)

  太阳及其喷射出的物质,填充了整个太阳系,涵盖了从太阳表面到地球附近,甚至整个太阳系空间。上图表明了在不同观测频率下观测到太阳的不同部分。在不同频率下相当于观测到了太阳不同的层次,类似于去剥一个“洋葱”,频率越低,观测的层次约靠外,频率越高,约接近太阳表面,直到可见光波段,看到太阳光球层,也就是大家肉眼可见的太阳。为了能够在三维上对太阳进行解析,构建数字化太阳,就必须在射电波段进行探测。

  在从日心向外的方向上,可以利用不同的射电频率观测,综合其不同的层次得到完成的太阳数据。在日地连线的方向上,需要采用干涉成像的方法来得到两维的射电图像。一般的射电望远镜的空间分辨率可以近似表述为:1.22λ/D,其中λ为观测波长,D为望远镜口径。因为射电波段的波长远远大于光学波段,单一的大口径天线也无法得到较好的空间分辨。

  因此,一般会采用综合孔径成像的方法来实现,通过测量太阳信号到达各个天线的相位差来反求太阳亮度分布,专门对太阳观测的射电干涉阵列也称之为“射电日像仪”。关于太阳射电探测技术的内容可见《太阳射电天文学的观测技术》(陈林杰),《太阳射电成像的数字相关器》(刘飞)。

  与其它的射电源不同,太阳辐射具有一些独特之处,使得射电日像仪系统有着独特的设计要求。

  信号的快变性,信号的变化时标最快可达毫秒级。要求成像观测只能工作在快照模式,无法通过长时间积分提高信噪比;还要求同时多频率通道探测,实现类似于“CT”般的成像观测。

  展源特性,太阳大概是个32角分的面源,根据单口径天线视场公式,为了罩住全日面,天线口径不能太大。例如日本野边山日像仪的口径仅为80cm。

  信号的大动态性。不同频率下,太阳的信号动态范围很大,例如在厘米分米波段,要求接收系统的动态范围大于30dB。

  中科院国家天文台在明安图观测基地建立的明安图射电频日像仪(MUSER),就是可以实现太阳三维立体探测的一个射电成像望远镜,具备快速多通道对太阳的二维成像观测能力。

如何三维立体探测太阳?

图2. 明安图射电频谱日像仪(MUSER)(图源:颜毅华 摄)

  由射电日像仪获得太阳观测二维图像后,对这些不同频率的分层图像进行处理与三维(3D)重构,对二维图像中的特征点搜索,直观展现太阳不同高度层,给出有效的科学数据展现办法,实现太阳三维立体空间展示。

如何三维立体探测太阳?

图3. MUSER多通道观测的太阳爆发(图源:Chen, Yan, Tan, et al.ApJ, 2019)

  作者简介:王威,中国科学院国家天文台高级工程,明安图观测基地站长,主要研究方向为射电望远镜校准方法,射电天文数据处理和图像处理方法等。

  文稿编辑:赵宇豪、柒柒

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 贵州台江:义诊下基层 服务暖民心

  • 湖南常德:瞄准国际市场 赶制外贸订单

独家策划

推荐阅读
他们提出一种全新多物理域融合计算系统,可利用后摩尔新器件支持傅里叶变换,使算力提升近4倍,为具身智能、通信系统等领域开辟新的可能。
2026-01-15 04:05
2025年11月,中国载人航天工程启动第一次应急发射任务,并取得圆满成功。此次任务,源于神舟二十号飞船疑似遭到空间微小碎片的撞击,返回任务被迫按下紧急“暂停键”。
2026-01-15 04:55
现代人工智能是先进计算的产物,也是赋能千行百业的技术。从早期符号主义在有限算力下的踯躅前行,到神经网络思想历经沉浮,直至大数据与图形处理器(GPU)的邂逅,
2026-01-15 04:55
项目骨干成员、中国科学院大学教授郑阳恒表示,团队还将与暗物质探测实验团队合作,将此次实验结果融入下一代探测器的研发中。
2026-01-15 09:03
对于娱乐及部分消费产业而言,当前的人形机器人还不适合作为长期自有资产,更适合通过“租赁+技术服务”的方式使用。
2026-01-15 09:02
最终,他们模拟出一种外形稳定的氰化氢晶体,其外形为顶端多面、底部圆润的圆柱体,长度约450纳米,整体形状类似切割后的宝石。
2026-01-15 09:00
从中国地震局获悉,近日,在离岸80千米的三峡江苏大丰海上风电场,全国首个海底综合地震电磁监测台站建成,这标志着我国地球物理场监测台网向海域拓展取得新进展。
2026-01-15 04:05
你有没有感觉,这些年的春天来得越来越不规律了?相比过去,有的地方春来早,有的地方春迟到。这不是你的错觉,全球变暖正导演着一场波及整个北半球的“春日变奏曲”。
2026-01-14 02:55
布局未来产业,要统筹经济性与战略性,综合考虑绝对优势和比较优势,深耕细分赛道,探索各具特色的发展路径和模式。
2026-01-14 09:03
实现了育种加代方法的颠覆性创新,整体上达到国际领先水平。
2026-01-14 19:12
相关研究成果发表于《植物生物技术》,为光信号驱动的绿色农业技术创新提供了全新思路。
2026-01-14 19:12
“十四五”以来,生态环境部卫星遥感监测能力显著提升,目前已在轨运行7颗生态环境卫星,初步构建起多星联动的生态环境卫星遥感监测体系。
2026-01-14 09:03
作为钢铁生产核心工序,高炉占生产总成本的70%左右,其长期稳定运行直接关系企业盈利状况。经过攻关,宝钢股份高炉AI大模型对炉温等关键指标的预测准确率达90%,实现对内部状态的高精度、高时效性感知。
2026-01-14 09:02
1月13日23时25分,我国在海南商业航天发射场使用长征八号甲运载火箭,成功将卫星互联网低轨18组卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。
2026-01-14 09:01
扎实推进农机购置与应用补贴“优机优补”“有进有出”,支持创新机具有序列补,加大补贴力度,推动过时落后机具加快退出。
2026-01-14 09:02
作为全国首个商业航天共性试验和科研生产基地,“北京火箭大街”项目由亦庄控股旗下城市更新公司投资、开发、运营管理
2026-01-13 17:38
力鸿一号遥一飞行器12日在酒泉卫星发射中心圆满完成亚轨道飞行试验任务,返回式载荷舱顺利着陆完成回收。本次飞行试验圆满完成返回式载荷舱的再入大气层返回减速与回收验证,
2026-01-13 03:35
从耳畔低语的智能伴侣,到街头无声行驶的自动驾驶车辆,科技正褪去冰冷外壳,融入人们日常生活。谷歌计划将AI技术嵌入人们日常依赖的应用Gmail内,让其帮助总结冗长的邮件,并撰写得体的回复。
2026-01-13 09:07
南极秦岭站附近,几只黑白分明、步履蹒跚的阿德利企鹅歪着头,打量着不远处向他们热情招手的中国考察队员。今年,中国第42次南极考察队又一次如约而至,继续开展对这些极地“原住民”的监测研究。
2026-01-13 09:06
加载更多