点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:如何三维立体探测太阳?
首页> 科普频道> 天文前沿 > 正文

如何三维立体探测太阳?

来源:光明网2021-08-17 11:39

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  常言道“万物生长靠太阳”,可以说,地球上的一切能源都是直接或间接的来源于太阳。人类的进步离不开太阳,太阳造福着人类,而太阳的剧烈活动也可能给人类带来灾难,对航天器、导航、通信、长距离电力输送等都有严重的影响。

  太阳活动最主要的表现为耀斑和日冕物质抛射,本质为太阳磁场变化而引起的能量释放、物质团迅速运动、高能粒子发射和相应的辐射增强。为了能够很好的理解太阳辐射,为空间活动提供预报预警,就需要对太阳进行三维探测。

  射电爆发是这些太阳剧烈活动的即时反应,能够无缝隙地提供太阳扰动在整个日地范围内信息。因此在无线电波段进行射电观测是研究太阳活动及其对日地空间环境影响的一个十分重要的手段。

如何三维立体探测太阳?

图1. 不同观测频率对应的太阳空间分布(图源:颜毅华)

  太阳及其喷射出的物质,填充了整个太阳系,涵盖了从太阳表面到地球附近,甚至整个太阳系空间。上图表明了在不同观测频率下观测到太阳的不同部分。在不同频率下相当于观测到了太阳不同的层次,类似于去剥一个“洋葱”,频率越低,观测的层次约靠外,频率越高,约接近太阳表面,直到可见光波段,看到太阳光球层,也就是大家肉眼可见的太阳。为了能够在三维上对太阳进行解析,构建数字化太阳,就必须在射电波段进行探测。

  在从日心向外的方向上,可以利用不同的射电频率观测,综合其不同的层次得到完成的太阳数据。在日地连线的方向上,需要采用干涉成像的方法来得到两维的射电图像。一般的射电望远镜的空间分辨率可以近似表述为:1.22λ/D,其中λ为观测波长,D为望远镜口径。因为射电波段的波长远远大于光学波段,单一的大口径天线也无法得到较好的空间分辨。

  因此,一般会采用综合孔径成像的方法来实现,通过测量太阳信号到达各个天线的相位差来反求太阳亮度分布,专门对太阳观测的射电干涉阵列也称之为“射电日像仪”。关于太阳射电探测技术的内容可见《太阳射电天文学的观测技术》(陈林杰),《太阳射电成像的数字相关器》(刘飞)。

  与其它的射电源不同,太阳辐射具有一些独特之处,使得射电日像仪系统有着独特的设计要求。

  信号的快变性,信号的变化时标最快可达毫秒级。要求成像观测只能工作在快照模式,无法通过长时间积分提高信噪比;还要求同时多频率通道探测,实现类似于“CT”般的成像观测。

  展源特性,太阳大概是个32角分的面源,根据单口径天线视场公式,为了罩住全日面,天线口径不能太大。例如日本野边山日像仪的口径仅为80cm。

  信号的大动态性。不同频率下,太阳的信号动态范围很大,例如在厘米分米波段,要求接收系统的动态范围大于30dB。

  中科院国家天文台在明安图观测基地建立的明安图射电频日像仪(MUSER),就是可以实现太阳三维立体探测的一个射电成像望远镜,具备快速多通道对太阳的二维成像观测能力。

如何三维立体探测太阳?

图2. 明安图射电频谱日像仪(MUSER)(图源:颜毅华 摄)

  由射电日像仪获得太阳观测二维图像后,对这些不同频率的分层图像进行处理与三维(3D)重构,对二维图像中的特征点搜索,直观展现太阳不同高度层,给出有效的科学数据展现办法,实现太阳三维立体空间展示。

如何三维立体探测太阳?

图3. MUSER多通道观测的太阳爆发(图源:Chen, Yan, Tan, et al.ApJ, 2019)

  作者简介:王威,中国科学院国家天文台高级工程,明安图观测基地站长,主要研究方向为射电望远镜校准方法,射电天文数据处理和图像处理方法等。

  文稿编辑:赵宇豪、柒柒

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 1月28日,国网宝鸡供电公司输电运检中心秦岭输电运维班成员赵鹤在变电站张贴新春对联。陕西省宝鸡市凤县的秦岭深处坐落着一座特殊的“融冰”电站——110千伏秦岭融冰变电站。由于当地处在冷暖气流交汇带,雨雪天气极易导致输电线路覆冰。

  • 1月30日,山东省泰安市高新区北集坡街道组织的“品书香 赏非遗逛大集”活动热闹开集,丰富多彩的文艺节目和便民服务项目吸引周边村镇居民前来逛大集办年货。

独家策划

推荐阅读
为揭示东亚古人类的技术智慧与演化脉络提供了关键证据。
2026-01-30 09:37
中国气象局29日发布《2025年中国风能太阳能资源年景公报》。公报显示:2025年,全国风能资源为正常年景,全国太阳能资源总体为偏小年景。
2026-01-30 03:30
想象一下手电筒的光:柔和而四散,照亮着前方。激光,就像一束训练有素的光——所有光粒子步调一致,朝着同一个方向前进,能量高度集中。这种特性让激光能完成普通光做不到的“精细活”,从超市扫码器到医院手术刀,从光纤通信到舞台灯光秀,背后都有它的身影。
2026-01-30 03:30
激光技术被誉为20世纪“四大科技发明”之一。聚焦真空紫外非线性光学晶体材料领域基础研究和关键核心技术,中国科学院新疆理化技术研究所(以下简称“新疆理化所”)潘世烈团队成功研制出氟化硼酸铵(ABF)晶体,首次实现直接倍频真空紫外激光158.9纳米输出,创造了该领域世界最短输出波长纪录。相关成果于29日在国际学术期刊《自然》发表。
2026-01-30 03:30
开慧镇党委书记杨骏介绍,依托科技小院,全镇形成科技养殖示范点5处、示范户24户,带动村民增收1800余万元,并发展起梅花鹿、鹌鹑等特色养殖产业。在博乐市区西南方向四五公里处的荒漠化草原上,科技小院还开辟了200多亩的试验场,将这里作为科研攻关的第一线。
2026-01-30 09:17
科研人员将种子放入冷库储存。例如,千年种子库与中国西南野生生物种质资源库就通过人员交流、技术培训、资源备份、联合研究等,共同推进生物多样性保护。
2026-01-30 09:16
寒冬时节,云南省元江哈尼族彝族傣族自治县龙潭社区番荔枝种植基地里却热火朝天,一颗颗“冬日限定”的番荔枝被采摘、装箱,销往全国各地。
2026-01-30 09:14
“相对拥有百年历史的《科学》,《工程》才走过第一个十年。未来十年,我们要争取与世界顶级刊群比肩。”周济表示,这条路需要时间,以及学术评价观念、出版生态与国际化运营能力的协同推进。
2026-01-29 02:45
工业和信息化部28日公布,2025年,我国通信业实现平稳增长,产业结构持续优化,用户规模实现量质双升,5G、千兆等新型信息基础设施建设加快部署。
2026-01-29 02:55
中国科学院物理研究所近日发布《2025年度REBCO高温超导带材战略研究报告》(以下简称“报告”),这是国际上首份针对高温超导带材发展的系统性战略报告。
2026-01-29 02:55
2025年,山东省实现地区生产总值10.3万亿元,比上年增长5.5%。亮眼的成绩单,离不开创新动能持续发力。齐鲁大地上,科技创新和产业创新融合发展成果正在厚积薄发,新质生产力加速崛起,转型动能持续增强,高水平创新型省份建设的目标正在逐步实现,向着“十五五”征程稳步进发。
2026-01-29 02:45
近期,多家外国科技公司宣布计划将人工智能及数据中心送往太空,引发了科技界的热烈讨论。这一看似在科幻电影中才会发生的场景,已逐步从设想转变为现实。
2026-01-29 02:55
手机厂商将投入更多精力,通过形态变革、差异化外观设计、联名合作等,更好地满足用户的情绪价值需求,激发消费者购买欲望。
2026-01-29 09:02
截至2025年底,全国累计发电装机容量38.9亿千瓦,同比增长16.1%。2025年,风电光伏累计装机历史性超过火电,截至12月底已超出约3亿千瓦。
2026-01-29 09:01
1月27日上午,中国科学院大学星际航行学院揭牌仪式在中国科学院与“两弹一星”纪念馆举行,标志着该学院正式成立。从“东方红一号”划破天际到“祝融号”漫步火星,中国人的航天梦从未停止。
2026-01-28 02:45
2025年,我国区域科技创新布局更加优化,三大国际科技创新中心建设进入新阶段,区域科技创新中心建设取得新成效。
2026-01-28 02:45
打破产业间的壁垒,鼓励跨领域、跨行业的融合探索,推动资源要素的自由流动与高效配置,不仅能盘活存量资源、激发增量活力,更能催生具有引领性的新产业、新模式、新动能。
2026-01-28 02:45
合肥是儿童文学作家许诺晨的家乡。合肥科学岛,是她所拥有的一座得天独厚的科学和科幻题材的“硬核基地”,由她来写量子少年这个题材,可谓“近水楼台”。《量子女孩》(中国少年儿童新闻出版总社2025年12月出版)是她献给“量子新城”合肥的一部“家乡书”。
2026-01-28 02:55
北京火箭大街展示与运控中心作为商业航天测运控中心、商业航天公共服务平台的空间载体,将为企业提供卫星运控服务和交流推介平台。
2026-01-28 09:15
水稻耐不耐旱,和叶子的厚实程度相关,这是由什么因素决定的?日前,中国农业科学院作物科学研究所水稻分子设计技术与应用创新团队发现,水稻基因组中的三个耐旱基因可以“团队作战”,
2026-01-27 02:50
加载更多