点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:最简单的结构 传递远方的信息
首页> 科普频道> 天文前沿 > 正文

最简单的结构 传递远方的信息

来源:光明网2020-11-13 11:01

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  羟基(OH)是最简单的分子之一,仅由一个氧原子和一个氢原子组成。在初中化学里面我们就经常接触带电的羟基,也就是氢氧根,它在地球上很常见。而在遥远的宇宙中,是否也存在这种分子呢?

  早在1963年,麻省理工学院(MIT)的Sander Weinreb等人就利用射电望远镜探测到了星际介质中OH的谱线[9]使其成为首个在射电波段被探测到的星际分子。

  其实在上世纪五十年代,苏联的I. S. Shklovsky 和美国的 C. H. Townes就分别提出在星际介质中存在OH,并有可能在射电波段被探测到。然而随后的几次实验性的观测都未能探测到星际介质中的OH信号,其中还包括后来因发现宇宙微波背景辐射而拿到诺贝尔奖的Arno Penzias的观测。[9]

  在六十年代初期,Weinreb还是MIT在读的博士生,他在博士期间开发出了世界上第一台自相关频谱仪,并将其用在了一面26米口径的射电望远镜上(图1)。这面加装了新设备的望远镜很快就探测到了来自太空的OH谱线。随后Weinreb的自相关频谱仪技术也被广泛应用到了其他射电天文望远镜上,成为探测星际分子谱线的利器。

最简单的结构 传递远方的信息

图1. 1958年MIT 林肯实验室的26米射电望远镜(图源:wikipedia)

  Weinreb当时探测到的是OH波长为18厘米处的两条谱线,对应频率分别为1665 和1667 MHz。不过由于那时人们对OH能级跃迁常数的计算不够精确,对OH的激发温度也不太清楚,因此Weinreb并没能通过测到的谱线计算出准确的OH含量[6]。

  直到六十年代中后期,人们才给出比较精确的OH跃迁常数,再加上后来对OH在星际介质中激发温度的深入了解[4],才使得OH谱线的测量在天体物理中有了更广泛的应用。

  OH在18厘米附近实际上有四条谱线,对应了OH分子四种转动能级之间的跃迁。这些不同能级之间跃迁信号使得人们可以对地球以外的原子物理参数进行独立的检验。

  在2005年,Nissim Kanekar等人就利用一个距离地球80多亿光年外(共动距离,红移z=0.765)的OH吸收线光谱对原子物理中的精细结构常数进行了达到万分之一精度的测量,并发现在这种测量精度下,这个位于遥远宇宙的系统中的精细结构常数与地球实验室中测到的数值几乎一样[5]这也在一定程度上证明了我们在地球上发展出的原子物理,在跨越了茫茫宇宙的空间和时间之后,仍然是成立的。

  此外,OH还是氢分子很好的示踪气体。宇宙中最多的原子是氢原子(H),而最多的分子则是氢分子(H2)。由于氢分子有较强的对称性 — 由两个一模一样的氢原子组成,它在星际介质的低温环境下能发出的辐射极其微弱,用现有的望远镜几乎无法探测。因此人们一般会利用一些与氢分子混合在一起的其他分子,比如一氧化碳(CO)和OH,来作为氢分子的示踪分子。

  国家天文台的许铎、汤宁宇和李菂等人[6,8,10]就曾发现在很多弥散的星际分子气体中,只能探测到OH谱线却没有CO,说明OH比CO对这些弥散的暗分子气体具有更好的示踪效果。

  OH虽然比氢分子更容易探测,但是它在一般星际介质中的温度很低,甚至接近宇宙微波背景辐射的温度,约3.5K[6],因此需要很长时间的积分才能探测到微弱的发射线。除了在银河系内以及一些特殊的脉泽星系之内能探测到OH外,在一般河外星系中,几乎看不到OH的射电谱发射线。天文学家于是利用了一个巧妙的办法来探测宇宙学距离上的OH射电信号,那就是吸收线。

  吸收线探测的原理很简单:如果在遥远的宇宙中有一个非常亮的背景源,那么它发出的光在穿过一团含有OH的气体云之后,就会在其光谱的18-厘米附近产生吸收线(图2)。其实Weinreb 最初在1963年发表的星际介质中的OH射电谱线就是通过这种方法看到的,只不过他看到的是银河系内气体云中的OH谱线。天文学家在后来的观测中将这种方法用在了对河外星系的观测当中,并成功探测到了一些遥远星系里的OH[5]。

最简单的结构 传递远方的信息

图2. 吸收线的产生与探测示意图(图源:作者)

  即便是利用吸收线探测,由于OH的相对含量较低,对望远镜的探测灵敏度要求很高,目前吸收线探测成功的例子屈指可数。比如N. Gupta等人利用现今世界上最大的一批射电干涉阵,美国的甚大阵(VLA),印度的巨米波射电望远镜(GMRT),以及荷兰的韦斯特博克综合孔径射电望远镜(WSRT,图3),观测了9个目标,但是只探测到了一个OH吸收线[3];而Kathryn Grasha等人利用美国的100米口径绿岸射电望远镜(GBT)搜寻了数十个目标,一个新的OH吸收线都没有探测到[1,2]。

最简单的结构 传递远方的信息

图3:荷兰WSRT射电望远镜阵(图源:wikipedia)

  至今为止,只有6个非脉泽的河外星系中探测到了OH 射电吸收线。不过这些未能探测到OH吸收线的大量数据也对这些遥远星系中的OH含量上限做出了很好的限制:OH含量约为氢原子含量的百万分之一到千万分之一左右。

  我国的五百米口径球面射电望远镜(FAST,中国天眼)是现今世界上最灵敏的单天线射电望远镜,极大有助于对遥远星系中OH吸收线的探测。国家天文台的郑征、李菂、汤宁宇,以及澳大利亚悉尼大学的Elaine Sadler和英国牛津大学的James Allison组成的一个科学团队利用FAST对一批9个明亮的河外星系射电源进行了一系列测试性的观测[11]。

  FAST观测到的光谱数据虽然未能探测到这批星系中的OH吸收线,却对其中OH的含量做出了迄今为止最强的限制:它们的OH含量小于其氢原子含量的五千万分之一。

最简单的结构 传递远方的信息

图4. OH含量(纵轴)随宇宙学红移(横轴)的变化(图源:Zheng et al. (2020))

  除此之外,在综合了FAST最新的观测数据和之前不同望远镜的观测结果之后,我们发现OH在星系中的含量随着宇宙的演化是变化的(图2):随着宇宙学红移的减小(宇宙年龄增大),OH的含量越来越少。而这暗示着星系中分子气体的含量在过去的70亿年以来下降了超过一个数量级。

  我们将继续利用FAST进行更多的河外OH吸收线搜寻,而正在建设之中的平方公里阵(SKA)在建成之后也将是进行此类探测的更有效的利器。

  参考文献:

  [1] Grasha, K., et al., A Search for Intrinsic H i 21 cm and OH 18 cm Absorption toward Compact Radio Sources, 2019, ApJS, 245, 3

  [2] Grasha, K., et al., The evolution of neutral hydrogen over the past 11 Gyr via H I 21 cm absorption, 2020, MNRAS, 498, 883

  [3] Gupta, N., et al., Discovery of OH Absorption from a Galaxy at z ∼ 0.05: Implications for Large Surveys with SKA Pathfinders, 2018, ApJL, 860, L22

  [4] Heiles, C., Normal OH emission and interstellar dust clouds, 1968, ApJ, 151, 91

  [5] Kanekar, N., et al., Constraints on Changes in Fundamental Constants from a Cosmologically Distant OH Absorber or Emitter, 2005, PRL, 95, 261301

  [6] Li et al., Where is OH and Does It Trace the Dark Molecular Gas (DMG)?, 2018, ApJS, 235, 1

  [7] Robinson, B. J. & McGee, R. X., OH Molecules in the Interstellar Medium, 1967, ARA&A, 5, 183

  [8] Tang, N. et al., OH Survey along Sightlines of Galactic Observations of Terahertz C+, 2017, ApJ, 839, 8

  [9] Weinreb, S., et al. Radio Observations of OH in the Interstellar Medium,1963, Nature, 200, 829 [10] Xu et al., Evolution of OH and CO-Dark Molecular Gas Fraction across a Molecular Cloud Boundary in Taurus, 2016, ApJ, 819, 22

  [11] Zheng, Z., et al., A pilot search for extragalactic OH absorption with FAST, 2020, MNRAS, 499, 3085

  作者简介:

  郑征,国家天文台副研究员,主要研究领域为星系形成与演化,河外吸收线等。

  李菂,射电天文学者,FAST首席科学家。发展了氢气窄线自吸收方法,现为突破基金会“聆听计划”咨询委员。

  汤宁宇,国家天文台助理研究员,主要研究领域为星际介质演化。

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 辽宁营口:24小时为进出港船只破冰护航

  • 美丽中国丨冬日抚仙湖

独家策划

推荐阅读
“相对拥有百年历史的《科学》,《工程》才走过第一个十年。未来十年,我们要争取与世界顶级刊群比肩。”周济表示,这条路需要时间,以及学术评价观念、出版生态与国际化运营能力的协同推进。
2026-01-29 02:45
工业和信息化部28日公布,2025年,我国通信业实现平稳增长,产业结构持续优化,用户规模实现量质双升,5G、千兆等新型信息基础设施建设加快部署。
2026-01-29 02:55
中国科学院物理研究所近日发布《2025年度REBCO高温超导带材战略研究报告》(以下简称“报告”),这是国际上首份针对高温超导带材发展的系统性战略报告。
2026-01-29 02:55
2025年,山东省实现地区生产总值10.3万亿元,比上年增长5.5%。亮眼的成绩单,离不开创新动能持续发力。齐鲁大地上,科技创新和产业创新融合发展成果正在厚积薄发,新质生产力加速崛起,转型动能持续增强,高水平创新型省份建设的目标正在逐步实现,向着“十五五”征程稳步进发。
2026-01-29 02:45
近期,多家外国科技公司宣布计划将人工智能及数据中心送往太空,引发了科技界的热烈讨论。这一看似在科幻电影中才会发生的场景,已逐步从设想转变为现实。
2026-01-29 02:55
手机厂商将投入更多精力,通过形态变革、差异化外观设计、联名合作等,更好地满足用户的情绪价值需求,激发消费者购买欲望。
2026-01-29 09:02
截至2025年底,全国累计发电装机容量38.9亿千瓦,同比增长16.1%。2025年,风电光伏累计装机历史性超过火电,截至12月底已超出约3亿千瓦。
2026-01-29 09:01
1月27日上午,中国科学院大学星际航行学院揭牌仪式在中国科学院与“两弹一星”纪念馆举行,标志着该学院正式成立。从“东方红一号”划破天际到“祝融号”漫步火星,中国人的航天梦从未停止。
2026-01-28 02:45
2025年,我国区域科技创新布局更加优化,三大国际科技创新中心建设进入新阶段,区域科技创新中心建设取得新成效。
2026-01-28 02:45
打破产业间的壁垒,鼓励跨领域、跨行业的融合探索,推动资源要素的自由流动与高效配置,不仅能盘活存量资源、激发增量活力,更能催生具有引领性的新产业、新模式、新动能。
2026-01-28 02:45
合肥是儿童文学作家许诺晨的家乡。合肥科学岛,是她所拥有的一座得天独厚的科学和科幻题材的“硬核基地”,由她来写量子少年这个题材,可谓“近水楼台”。《量子女孩》(中国少年儿童新闻出版总社2025年12月出版)是她献给“量子新城”合肥的一部“家乡书”。
2026-01-28 02:55
北京火箭大街展示与运控中心作为商业航天测运控中心、商业航天公共服务平台的空间载体,将为企业提供卫星运控服务和交流推介平台。
2026-01-28 09:15
水稻耐不耐旱,和叶子的厚实程度相关,这是由什么因素决定的?日前,中国农业科学院作物科学研究所水稻分子设计技术与应用创新团队发现,水稻基因组中的三个耐旱基因可以“团队作战”,
2026-01-27 02:50
年轻人享受便利的同时,关注新的变化:智能穿戴设备是否正在塑造一个充满数据和规定的生活方式?“贴身伙伴”的出现改变了生活,人们同自己身体、同生活本身的关系,是不是也在变?
2026-01-27 03:15
商业航天是培育新质生产力、建设航天强国的重要力量。面对全球商业航天竞争日趋激烈的态势,中国商业航天亟须推动产业从“政策驱动”转向“市场驱动”。
2026-01-27 09:18
云南大学研究团队日前在国际学术期刊《自然》发表了关于早期脊椎动物视觉系统演化的研究成果,首次揭示了早期脊椎动物具有4只相机型眼,
2026-01-27 02:50
黄宣谕在《当代中国史研究》2025年第6期撰文指出,1949—1958年,基于工作重心转移与科普力量分布状况,党和政府重点在大中城市开展科普工作。
2026-01-28 02:55
印度东部西孟加拉邦近期出现尼帕病毒感染病例,目前已报告5例确诊病例,其中一名患者病情危重。泰国、尼泊尔等国已在机场和边境口岸加强防疫检测。尼帕病毒是一种新出现病毒吗?它有哪些特点?为何印度暴发的尼帕病毒疫情引起多国高度关注?
2026-01-27 03:15
科学家精神在我国科技发展事业中萌芽、生成、丰富、完善,成为兼具历史传承性、文化包容性与民族独特性的精神标识,不仅教育引导各类人才矢志爱国奋斗、锐意开拓创新,更是拔尖创新人才成长的精神旗帜与动力源泉。
2026-01-27 03:15
1月26日,将迎来腊八。一些细心的公众发现,相较于前些年,今年腊八来得有些晚。
2026-01-26 09:59
加载更多