点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

首页> 科普频道> 天文前沿 > 正文

星的色与谱

来源:光明网2020-06-05 10:16

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  大家认为夜空是什么颜色的呢?这时或许大多数人脑海中会浮现出这样一幅黑白画:黑色的画布上点缀着一颗颗一闪一闪的小星星,角落可能还挂着弯弯的月亮。

  而实际上,大家晚上仰望星空,应该看到的是一幅彩色的画卷。对星空摄影比较熟悉的读者可能会发现,夜空其实并不单调,甚至五颜六色、充满生机、热闹非凡。比如蓝色的参宿七、橙色的五车二、红色的心宿二,还有色彩斑斓、如诗如画的各种星云。

 星的色与谱 

图1 宇宙礁。图片来源:https://hubblesite.org/resource-gallery/images

 星的色与谱 

图2 韦斯特隆德2(Westerlund 2)。图片来源:https://hubblesite.org/resource-gallery/images

 星的色与谱 

图3 超巨星HR5171附近的星场。图片来源:https://www.eso.org/public/images/eso1409a

 星的色与谱

图4 国家天文台兴隆观测站的冬季星空(摄影:袁凤芳)

  恒星会呈现不同的颜色主要是因为表面有效温度不同,温度高的恒星颜色偏蓝,温度低的偏红。星云在可见光波段主要依靠附近的恒星照亮。而人眼因为视觉神经构造的原因,在天体太暗时无法分辨其颜色,只有在恒星比较亮的时候才能分辨出它们的颜色。而数码相机的探测器本身是无法区分颜色的,其主要功能是把光子转化为电子,并把收集到的电子数清楚。之所以彩色相机能拍出来彩色的图片,其实是因为使用了多色滤镜,比如常用的拜尔滤镜(Bayer-filter)。彩色相机在获得不同颜色的强度后,按一定算法重新还原物体的颜色。

星的色与谱

图5 拜尔滤镜[2]

  恒星的表面有效温度是描述恒星性质的重要物理参数[1]。对于遥远的天体也是比较容易测得的物理量之一。并且由于恒星的表面有效温度通常在2,600K-50,000K之间(此处“K”对应中文为“开尔文”,是科学上常用的温度单位之一,该值减去273.15即转化为我们生活中常用的摄氏温度值),很多恒星在人眼可见的光谱范围内都有较强的辐射。太阳的表面有效温度约为5,800K,辐射的峰值波长在500nm左右,人类的眼睛在长期的演化过程中逐渐适应了太阳这颗恒星营造的生存环境。事实上恒星在可见光范围内都有辐射,蓝色的恒星并不是只有蓝色光,只是在蓝色区间辐射的能量最强,所以看起来偏蓝。

星的色与谱

图6 恒星表面有效温度与辐射峰值波长的关系。图片来源:http://230nsc1.phy-astr.gsu.edu/hbase/wien.html,并稍作修改,修图:邱鹏

  测量恒星表面有效温度最简单的办法是利用滤光片系统。这与彩色相机的滤镜有点类似,但天文观测需要精确测量,所以通常是采用多色滤光片系统(常用的有Jonson-Bessel和SDSS滤光片系统)或者使用分色棱镜组(如菲利普棱镜组)将不同波长范围的光分开。从而精确测量不同波长范围内的光子数,然后通过比较不同波段内光子数的差值(如色指数),结合黑体辐射曲线大致判断天体的颜色。因为多色滤光片通常是比较粗略的窗函数采样,所以要得到天体不同波长处更加详细、更加准确的光子数就需要测量天体的光谱了。

星的色与谱  

图7 SDSS滤光片透过率曲线。图片来源:https://mcdonald.utexas.edu/images/McDonaldObservatory,并稍作修改,修图:邱鹏

星的色与谱  

图8 分色棱镜组。图片来源:https://apre-inst.com/products/sci

  测量时会涉及两个概念,一个是恒星的亮度,一个是恒星的光度。亮度是指我们实际测到的天体的光子数,因为天体离我们的距离不同,所以亮度并不能直接反应天体本身的光度。这里的光度是指天体发出的总辐射。比如,一个100W的灯泡,近距离看它时很刺眼,但是距离1公里看它,就觉得暗多了。

  因为恒星辐射近似于有效温度相同的黑体辐射,所以测得了恒星的颜色就可以计算其表面有效温度。恒星表面有效温度与表面每秒单位面积内辐射出的总能量的大小是正相关的,温度越高每秒单位面积内辐射的能量越多。天文学家利用恒星的表面有效温度和光度得到了研究恒星演化的重要工具——赫罗图。这里太阳的光度为1,作为其他恒星光度的参考值。比如红巨星,它的颜色偏红,其表面有效温度低,但是光度大,那么必然它是一个很大的天体。因为只有拥有足够大的表面才能辐射足够多的能量。

星的色与谱

图9 赫罗图。图片来源:https://www.eso.org/public/images/eso0728c,并稍作修改,修图:邱鹏

  精确测量恒星的颜色,就需要获得其光谱,即将恒星发出的不同波长的光分离出来。一般是采用色散元件将来自天体的光进行色散。常用的色散元件有棱镜和衍射光栅。另外,也可以利用光的干涉原理进行测量,如法布里-珀罗干涉仪和迈克尔逊干涉仪。

  棱镜是利用光学材料对不同波长的光折射率不同来实现分光的。天体发出的光束入射到棱镜后,不同波长的光折射率不同,从棱镜出来时偏转的角度不同,从而将它们分开。棱镜色散的优点是连续性好,缺点是色散率低、色散率非线性。地球表面的大气层也相当于一个棱镜,斜入射的光束将被色散。棱镜也可以用来反向修正大气色散,这就是望远镜中常用的大气色散改正镜(ADC)。拍摄地平高度较低的天体时,加一个ADC将会获得不错的效果。

星的色与谱  

图10 棱镜色散原理示意图。图片来源:https://hubpages.com/education/rainbow-science

  衍射光栅主要是利用光的波动性来实现光谱分光的。衍射光栅按制作工艺主要分为刻画光栅和全息光栅两种。刻画光栅直观来讲,就是光栅面是一刀一刀刻画出来的。当然,实际情况是除了母光栅是用光栅刻画机一条一条的刻出来的,批量化的产品大多是用环氧树脂等材料复刻出来的,有点像用橡皮泥拓印硬币表面的图案。

星的色与谱

星的色与谱  

图11 光栅光谱仪工作原理和光栅结构示意图[3]。图片来源:http://www.analytik.ethz.ch

 星的色与谱 

图12 交叉色散光谱仪工作原理示意图。图片来源:http://www.ucolick.org/~vogt/images,并稍作修改,修图:邱鹏

  星的色与谱

图13 二维光谱图。图片来源:https://www.physicsforums.com

  全息光栅的制作方式与刻画光栅完全不同,不需要刻画过程,而是利用光致光刻胶变性的特性来记录干涉条纹。使用激光器产生空间干涉条纹,并用光刻胶记录这些条纹,经过定影、固化处理就获得了折射率周期性变化的相位光栅。

星的色与谱

图14 全息光栅制作原理及光栅结构示意图[4-5]。图片来源:https://www.horiba.com;http://www.kosi.com等网络,并稍作修改,修图:邱鹏

  得到天体的光谱后,除了可以精确测量颜色和温度外,还可以用谱线的红移/蓝移测量天体的视向运动,也可以根据光谱中的发射线和吸收线来测量天体的元素丰度、自转、磁场等。

星的色与谱

图15 织女星在400nm~900nm的光谱流量曲线 (绘图:张晓明)

  参考文献及图片引用

  [1] 鲁道夫·基彭哈恩.千亿个太阳[M]. 沈良照、黄润坤, 译.湖南科学技术出版社, 1996:1-36.

  [2] Yu-Cheng F , Yi-Feng C . Discrete Wavelet Transform on Color Picture Interpolation of Digital Still Camera[J]. Vlsi Design, 2013, 2013:1-9.

  [3] Christopher Palmer.Diffraction Grating Handbook (7th edition)[M]. Richardson Grating Laboratory, 2014.

  [4] Bakanas Ramūnas, Virginija J , Andrejs B , et al. Comparison of diffraction patterns exposed by pulsed and CW lasers on positive-tone photoresist[J]. Applied Optics, 2017, 56(8):2241.

  [5] Sabel T , Lensen M C . Function and structure – Combined optical functionality and specific bio-interaction for multifunctional biomedical materials[C]. Euro Biomat. 2017.

  作者简介

  张晓明,工学博士,中国科学院国家天文台高级工程师。主要研究方向为光学天文观测技术与方法、光学天文观测仪器光机系统设计。

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 第七届上海国际艺术品交易周举行

  • 扎根山村的“姐妹花”

独家策划

推荐阅读
以“智跃无界,开源致远”为主题的操作系统大会2025(以下简称“大会”)在北京举办。
2025-11-14 17:08
我国在4个国家开展6处文物古迹保护修复,49项中外联合考古项目涉及28个国家和地区,用实际行动践行全球文明倡议、不断丰富世界文明百花园。
2025-11-13 07:07
由四川省人民政府主办的2025世界动力电池大会12日在宜宾市开幕。
2025-11-13 04:55
据估算,太阳每秒钟释放的能量,可供全人类使用约70万年。模拟太阳来产生无尽的清洁能源,也因此成为人类的“终极能源梦想”。
2025-11-13 04:55
日前,中国科学院合肥物质科学研究院智能机械研究所、中科合肥智能育种加速器创新研究院联合发布重要成果:全链条机器人育种家“小海”与“海霸设施”小麦快速育种商业化服务平台同步启动,标志着我国在智能育种装备与工程化应用上取得关键突破。
2025-11-13 04:55
日前,记者从全球规模最大的恐龙蛋化石遗址——湖北青龙山恐龙蛋化石群国家级自然保护区获悉,数字化档案建设团队正为库藏的每一枚较完整恐龙蛋化石,赋予由“保护区名称—化石产地名称—库藏箱编号—标本编号”构成的唯一“身份证ID”。这标志着该保护区首次实现恐龙蛋化石专属标识管理。
2025-11-13 04:55
困扰无数人的睡眠问题,终于有一部纪录片说清楚了!
2025-11-13 08:55
国家卫生健康委百万减残工程专家委员会主任委员、中国医学科学院北京协和医学院院校长吉训明介绍,目前,全国已有20个省份成立减残工程专委会,8个省份正在积极推进。
2025-11-12 07:24
2025年是中国科学院院士、我国理论物理学奠基人、“两弹一星功勋奖章”获得者彭桓武诞辰110周年。
2025-11-12 07:23
由中国科学院昆明动物研究所牵头,联合国内外多家科研机构组成的研究团队,通过对现存及灭绝长臂猿的大规模基因组测序与比较分析,系统阐明了长臂猿科的演化历程、种群动态及其标志性长臂表型的遗传基础,为全球长臂猿的保护行动提供了新的科学见解,相关研究成果日前发表于国际学术期刊《细胞》。
2025-11-12 05:10
11月11日,长征八号甲遥五运载火箭在海南商业航天发射场成功实施转运,计划择期发射。
2025-11-12 05:10
近日,中核集团中国原子能科学研究院主导建设的量子放射性计量实验室及电离辐射计量级设备“一线多用”产研平台正式投入运行,成功填补我国在低温量子磁量热计领域的空白。
2025-11-12 05:10
在数据管理与使用方面,《实施方案》提出,实行物流公共数据分类分级管理,规范开展数据授权运营,扩大路网、轨迹、企业、人员等关键数据供给。
2025-11-11 10:03
中国科协日前发布的《中国科技期刊发展蓝皮书(2025)》显示,我国科技期刊总量持续增加,从2023年的5211种提升至2024年的5325种,整体影响力稳步提升。
2025-11-11 10:04
空天地一体化网络作为国家信息化的重要基础设施,其战略意义远超普通通信技术范畴,它不仅是我国实现信息全球覆盖、自主创新的必由之路,更是在数字时代掌握发展主动权的关键布局。
2025-11-11 10:02
拔尖创新人才培养不是考验瞬间爆发力的短跑,而是需要长期持久力的马拉松。 在课程体系搭建上,北航实验学校打造了“五级阶梯式”科技创新人才贯通培养课程群,实现从基础普及到进阶的无缝衔接。
2025-11-11 10:00
日前,国务院办公厅印发《关于加快场景培育和开放推动新场景大规模应用的实施意见》(以下简称《意见》),对相关工作作出部署。
2025-11-11 09:50
11月9日,国航C919重飞“两航起义”航线主题航班从香港飞抵天津,重温76年前“两航起义”的北飞航程,致敬“两航起义”爱国壮举。“两航”后代陈绍曾介绍,76年前,“两航起义”飞行员从香港驾驶12架飞机飞抵北京、天津,建设新中国民航事业。
2025-11-10 10:10
“超级细菌”指那些对多种抗生素具有耐药性的细菌。研究人员在一种常用药物的生产流程中意外发现一种很有前景的强效抗生素,能够杀死耐甲氧西林金黄色葡萄球菌等“超级细菌”。
2025-11-10 10:09
11月9日,2025年世界互联网大会乌镇峰会在浙江乌镇闭幕。世界互联网大会秘书长任贤良用“聚焦构建网络空间命运共同体理念”“关注创新发展热点议题”“不断擦亮峰会品牌”“持续贡献智慧力量”概括了本届峰会的特点。
2025-11-10 10:08
加载更多