正在阅读: 解密宇宙神秘信号FRB 中国天眼有奇招
首页> 科普频道> 天文前沿 > 正文

解密宇宙神秘信号FRB 中国天眼有奇招

来源:光明网2019-09-17 09:56

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  最近,中国天眼FAST探测到了快速射电暴FRB121102大量重复爆发,其捕捉的爆发数量为目前全世界已知最多(点击阅读原文了解更多)。快速射电暴是目前已知宇宙中射电波段最明亮的爆发现象,那么FAST在快速射电暴的研究上有哪些优势呢?一起来看看吧~

  FAST对FRB的研究具有独特的重要意义

  快速射电暴起源于遥远的星系,是射电波段最亮的信号。据估计,每天抵达地球的爆发脉冲多达几千到上万次,而我们对于其物理机制只有猜测,远远没有定论。据FRBCAT统计,截止目前已经有近百个FRB的发现,其中10多个被认定为重复爆发的快速射电暴。FAST视场相对较小,在发现新的FRB上和大视场望远镜如CHIME比,不占优势。但是它的灵敏度极高,对FRB的研究具有重大意义。FAST是理想的重复暴观测设备, 可以得到全世界最好的爆发信噪比及爆发率统计数据。此外,FAST将有可能探测到宇宙中最遥远的FRB。几天以来,我们已经探测到数百次的重复爆发,是已知最多的。目前仍在数据处理中。

  FAST FRB 终端:Building telescope is a game of shrinking dream

  本次快速射电暴的爆发首先由 FAST快速射电暴实时探测终端(FAST FRB 终端) 实时捕捉并预警。望远镜终端设备的建设是一个打怪升级的过程。从想法、设计和仿真到样机,从样机到可以测试使用的设备,从可以自己使用操作到可以供全世界天文学家观测使用的常规设备。每一步,都不容易。

  Lorimer博士在处理大麦哲伦星云脉冲星巡天数据的时候,发现了第一个快速射电暴(图1)。其亮度惊人,在多个不同指向的波束中看到,相当比例的数据已经饱和。直到今天,人类也不确切知道其真实亮度。由于只有一次探测,很难确认其真实性和起源。在2007年发表于《科学》杂志之后,被称为“Lorimer Burst", 但是受到普遍怀疑,特别是澳大利亚天文台的微波炉也被发现有生成脉冲特征信号的能力。直到2013年Thornton等人认证了其他四个爆发,这种现象才被称作快速射电暴,开启了目前最为热门的一个天文子领域。

解密宇宙神秘信号FRB 中国天眼有奇招

  图1:由Duncan Lorimer发现的第一个快速射电暴FRB 010724 (Lorimer et al. 2007, Science, 318, 777L)

  快速射电暴领域兴起时,FAST早已设计完成,开工都已经两年多了。大型设备的升级总是复杂、系统的挑战。2015年,我们与国际射电望远镜终端合作开发平台CASPER的创始人伯克利Werthimer教授进行了详细的探讨,确定了拓展19波束终端,建设实时探测、触发原始数据存储的FRB终端的方案。2016年,受中国科学院天文大科学中心邀请,西弗吉尼亚大学Lorimer教授和伯克利大学Heiles教授到FAST工程现场合作,进一步讨论了终端建设、偏振调试等等技术方案。

解密宇宙神秘信号FRB 中国天眼有奇招

  图2:右起依次为Duncan Lorimer, Carl Heiles, 蔡肇伟,李菂。摄于2016年12月

  FAST FRB 终端建设团队需要电子工程等工程学背景的人才,而工程技术人才职业发展的选择非常多,天文领域的待遇并不高。为了吸引学生加入团队,段然博士用其导师Sandy Weinreb的亲身经历鼓励大家。Weinreb是电子工程的博士,发明了世界第一台digital auto-correlator, 在射电波段首次发现星际分子羟基(OH)。他的数字相关机技术,现在应用于全世界几乎所有的主要望远镜 。Weinreb博士在2008年获得射电天文大奖the Grote Reber Medal。

解密宇宙神秘信号FRB 中国天眼有奇招

  图3:射电天文第一个星际分子发现(左)及第一台数字相关机(Weinreb et al. 1963 Nature)

  “自古伟大的天文学家,不都是自己造望远镜的么?我们非常幸运,可以参与到FAST望远镜的建设里来,很多人一辈子都赶不上”。后端团队最爱说的一句话是“Building telescope is a game of shrinking dreams"。这是一支心怀梦想,坚韧不拔的小团队。

解密宇宙神秘信号FRB 中国天眼有奇招

  图4:2015年团队成员在实验室调试

  2015年, 团队成员在实验室调试终端设备(上图)。

解密宇宙神秘信号FRB 中国天眼有奇招

  图5:2016年临时终端室调试(上)、2017年终端室调试(中)、在FAST现场组织FRB终端技术研讨(下)

  2016年的FAST现场远不像现在这么漂亮。当时还是硕士研究生的张馨心用泡沫塑料做椅子,用UPS电源箱做桌子(危险勿仿),坚持完成调试工作。作为驻守在现场最久的终端建设人员,张馨心至今仍每年超过200天在FAST现场度过。临时终端室地板是临时搭建的,容易踩空,团队成员还曾掉下去过,好在没有受重伤。2017年,FAST现场指挥部建设完成,终端设备搬进了终端室,再也不用担心地板不稳掉下去了。

  2018年9月,在FAST现场,我们组织合作成员UC Berkeley, 北师大,新疆台的团队,技术攻关和初步测试。

  FAST FRB终端:一根敏感的脉冲视神经

  我们利用FRB终端试观测已知脉冲星,测试信号捕捉能力和基本指向对应。我们利用人为发射单脉冲信号,来校准FRB终端,调整触发的阈值。结合已知脉冲星的实测数据, 调节FRB终端针对信号变化的属性。

解密宇宙神秘信号FRB 中国天眼有奇招

  图6:FAST FRB终端针对已知脉冲星(左)和人工生成脉冲(右)的测试

  最近的几个月,我们持续的对重复快速射电暴进行跟踪观测, 同时也在漂移扫描的时候并行监测。

  2019年8月10日,FRB 终端在漂移扫描时,发现一颗新的脉冲星。在运行启动很短的时间内就有新脉冲星的发现,验证了FRB终端高效和强悍的脉冲捕捉能力。

解密宇宙神秘信号FRB 中国天眼有奇招

  图7:FAST FRB终端实时捕捉的一颗新的脉冲星信号

  北京时间8月30日凌晨,FAST FRB终端实时捕捉FRB121102爆发,记录了原始数据并预警。硕士毕业后继续留在团组工作的助理工程师张馨心当天在FAST现场操作FRB 终端观测,边观测边实时检索候选体图片,发现持续的DM在500-600之间的单脉冲爆发。这在对FRB121102之前的跟踪观测中,并未见到。我们意识到可能是真实爆发,并迅速通知相关人员。FAST工程调试团队第一时间做出了响应,调整观测计划,安排补充凌晨的时间跟踪观测FRB121102。

解密宇宙神秘信号FRB 中国天眼有奇招

  图8:FAST FRB 终端实时捕捉的FRB121102的爆发信号之一

  FAST FRB 终端系统具有高效的实时脉冲捕捉能力,可以和大部分观测任务并行观测。好似给天眼装了一根敏感的视神经,只要是有脉冲,不管是快速射电暴还是新的脉冲星,都可以实时察觉并迅速反映。

  关于FRB的可能解释和模型

  FRB领域的发展轨迹很像“伽马射线暴”领域的早期。人类从发现“伽马射线暴”到达成普遍接受的合理解释经过了几十年。射电望远镜技术的发展,和预计中的大量可探测的FRB事件,使我们有理由相信FRB的起源会被更快的揭示。

  据不完全统计,目前关于FRB起源的模型有数十种。这些模型分为可重复的(解释重复暴)和灾变性的(解释不重复暴)。重复暴的可能起源包括脉冲星的巨脉冲,星际及星系间介质的放大作用,磁星爆发或同步脉泽辐射,中子星磁层与临近天体相互作用,小行星撞中子星等。灾变性FRB的起源模型包括超大质量中子星坍缩,双中子星并合,黑洞并合,宇宙弦释放能量等。目前观测限制极度缺乏。甚至有文章讨论FRB来源于地外智慧生命的可能性。这不是本文作者的观点,但反应了FRB带来的我们对已知的未知和未知的未知的探索追求。

  探索未知的好奇心是基础科学的原动力。一半的天文发现是“happy accident”, 包括宇宙微波背景辐射,加速膨胀的宇宙, 脉冲星, 伽马射线暴,和现在的FRB等等。阿雷西博望远镜建设在脉冲星发现之前。而阿雷西博脉冲星的观测成果证实了引力波的存在,获得1993年诺贝尔物理学奖。让我们保持一个好奇的,开放的心态,期待FAST和人类的更多发现。

  FAST FRB 后续期待

  凭借FAST极高的灵敏度和FRB终端高效的捕捉能力,我们相信,FAST不仅在重复暴的监测上将持续发挥作用, 我们将会在FRB领域有持续的新发现,请大家拭目以待。

  作者:段然,博士毕业于加州理工大学Caltech 电子工程系,负责FAST FRB 终端和CRANE 终端平台建设。曾负责CSO,SPIDER, CCAT等望远镜信号处理系统设计/建设和亚毫米波器件设计;李菂,国家天文台研究员,FAST FRB 终端项目PI。

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 绥芬河铁路口岸累计通行中欧班列超4000列

  • 美丽中国丨日出黄鹤楼

独家策划

推荐阅读
当日,石景山区AI for Science平台正式上线,该平台由枫清科技携手火山引擎联合打造,以AI驱动科研机构与企业的科研效率革新,降低科研门槛。
2025-12-27 20:21
记者25日从国防科技大学获悉,该校磁浮团队近日在磁悬浮试验中,成功在两秒内将吨级试验车加速至700公里/小时。测试速度打破了同类型平台全球纪录,成为全球最快的超导电动磁悬浮试验速度。
2025-12-26 10:08
12月24日,中国科学院重大科技基础设施“载人潜水器与海上作业母船”用户委员会2025年度会议披露:我国“深海勇士”号、“奋斗者”号、“蛟龙”号三大载人潜水器全年完成314次深潜,累计下潜总量达1746次,2026年将向2000次目标稳步迈进。
2025-12-26 10:05
日前,国家自然科学基金委员会在北京召开国家自然科学基金首批重大非共识项目遴选会议,标志着重大非共识项目正式启动试点。国家自然科学基金委员会将深入实施并持续优化重大非共识项目遴选机制,引导广大科研人员聚焦高水平原创性科研工作狠下功夫。
2025-12-26 09:59
其实,流感和普通感冒不是一回事,用药自然不能一概而论。流感一来往往会发高烧(体温39—40摄氏度),浑身肌肉酸痛、没力气,症状重;普通感冒多是鼻塞、流鼻涕、喉咙痛,发烧也多是低热,症状轻。
2025-12-26 09:58
一项近日发表于《科学》的研究指出,像ChatGPT 这样的人工智能(AI)工具正在大幅增加论文产量。此类文本数量的不断增加,使同行评议、资金决策和科研监督变得复杂,因为越来越难区分有意义的研究成果和低价值的内容。
2025-12-26 09:56
传统探查手段在如此深的地下几乎“失明”,无法精准捕捉地质特征。这项工程的成功实施,填补了我国超深埋输水隧洞注浆治理技术的空白,标志着我国在深埋地下工程地质探查与注浆治理领域达到国际领先水平。
2025-12-25 09:42
24日上午,随着最后一方混凝土浇筑完成,宁波舟山港六横公路大桥二期工程——青龙门特大桥双主塔成功封顶。青龙门特大桥位于浙江舟山,横跨青龙门水道,连接宁波梅山岛与舟山佛渡岛。
2025-12-25 09:45
24日,我国最大超深凝析气田——中国石油塔里木油田博孜—大北气田天然气年产量突破100亿立方米,生产凝析油91.89万吨。为攻克上述难题,塔里木油田持续攻关,推动气田开发实现从深层向超深层、从高压向超高压、从优质储层向复杂储层的三大跨越。
2025-12-25 09:44
前不久,“科学家预测恐龙复活有望实现”的话题冲上热搜,引起舆论关注。
2025-12-25 10:20
一项研究显示,科学家发现新物种的速度比以往任何时候都快——每年发现的新物种超过1.6万个,并且这一趋势没有放缓的迹象。除了医学,许多物种的适应特性还可以启发人类的发明创造,例如模仿壁虎垂直爬墙的“超强黏附”脚的材料。
2025-12-25 09:47
”这是中国科学院院士、北京航空航天大学研究生院原副院长高为炳生前在自述中留下的一句话。而在高为炳的学生看来,他之所以能在短时间内取得那么多成绩,根源就在于几十年的厚积薄发。
2025-12-25 09:46
昆虫性信息素相当于昆虫之间的“气味语言”,具有靶向性强、用量少、对环境友好等优点,是当前绿色植保的重要策略之一。
2025-12-24 10:05
作为中国科学院“十四五”重大项目之一,2022年7月27日,由中国科学院力学研究所(以下简称力学所)抓总研制的“力箭一号”火箭首飞成功。
2025-12-24 09:59
中国科学技术大学(以下简称中国科大)教授潘建伟、朱晓波、彭承志和副教授陈福升等基于超导量子处理器“祖冲之3.2号”,在码距为7的表面码上实现了低于纠错阈值的量子纠错,演示了逻辑错误率随码距增加而显著下降。
2025-12-24 09:58
为加快推进知识产权强国建设,日前,国家知识产权局会同有关部门编制完成《知识产权强国建设发展报告(2025年)》。
2025-12-24 09:57
国家能源局23日发布11月全国电动汽车充电设施数据。
2025-12-24 09:57
我国自主设计建造的全球首制甲醇双燃料动力智能超大型油轮“凯拓”轮22日在辽宁大连成功交付。
2025-12-23 09:54
中国科学院大连化学物理研究所副研究员方光宗、研究员潘秀莲团队在乙炔氢氯化制氯乙烯研究领域取得新进展。
2025-12-23 09:53
《自然》杂志网站12月18日刊发文章,展望了2026年值得关注的科学事件,涉及人工智能(AI)、基因编辑和太空探索等多个领域。中国计划于2026年发射嫦娥七号探测器,目标是在布满岩石与陨石坑、着陆难度极大的月球南极附近着陆。
2025-12-23 09:52
加载更多