点击右上角微信好友
朋友圈
请使用浏览器分享功能进行分享
只用一只小鼠就可以观察炎症发展的全过程?
只需要一批小鼠就可以对肿瘤治疗前、治疗中、治疗后的变化进行实时观测?
是的,通过一种转基因实验小鼠就可以实现,它们体内可以表达一种基于荧光蛋白的“生物传感器”。早在1997年7月,“发光小鼠”就在日本大阪大学诞生了。大阪大学微生物研究所的冈部胜和伊川正等人,将发光海蜇的发光遗传基因“GFP”注入到老鼠的受精卵中,从而培育出这种在黑暗中能发光的小鼠。
日本大阪大学培育的“发光小鼠”(图片来自网络)
绿色荧光蛋白:“皮卡丘发光小鼠”的“开关”
这种让小鼠变成真实版“皮卡丘”所用到的关键物质叫做绿色荧光蛋白,是当代生物学的重要“标识”工具。2008年,马丁·查尔菲(Martin Chalfie)、钱永健(Roger Y.Tsien)和下村修(Osamu Shimomura)三名科学家,凭借在绿色荧光蛋白质(GFP)研究领域取得的重要成就问鼎当年的诺贝尔化学奖。
通过绿色荧光蛋白质,可以帮助科学家了解细胞机制如何工作,科学家只需通过寻找荧光便可知道基因何时以及为什么“开启”。这一项重要成就,被康涅狄格学院化学家、《发光基因》作者马克·齐默(Mark Zimmer)称之为“21世纪的显微镜”。
基于此,通过采用生物发光成像或荧光成像技术,对细胞、细菌、病毒、蛋白、抗体、核酸、小分子药物分子和纳米材料等进行标记,并通过超高灵敏度相机采集其产生的微弱信号,从而了解研究对象在体内的生物学反应和过程,实时观察动物体内肿瘤的生长及转移、疾病发生发展过程、材料或药物在体内的代谢、基因表达等生物学过程。
刚出生的发光小鼠幼崽(图片来自网络)
被科学家“盯上”的小白鼠
随着生物技术的迅猛发展,转基因动物技术作为生物技术的重要组成部分也取得了飞速发展。转基因小鼠被广泛应用于基因表达、蛋白质间相互作用、癌症研究、免疫学研究、干细胞研究、神经疾病研究、药物研发与药效评估等领域。小鼠因其具有其他实验动物无法比拟的优势,成为目前最常用的转基因动物模型之一。那么,为什么小白鼠会受到科学家“青睐”?
中国科学院遗传与发育研究所生物学研究中心高级工程师姜韬在接受记者采访时表示,实验动物要考虑的因素大概有:容易饲养,繁殖率高,遗传上有较高的纯和度,代谢类型、生理病理尽量与人类接近等。而小白鼠在这些方面的优势都很明显。
除此以外,小白鼠还可以培育出许多特殊品种,比如免疫缺陷的裸鼠或者纯种小白鼠,这在其他动物中很难做到。毋庸置疑的是,小白鼠在人类的医疗、遗传、生物制品等各方面的科学研究中做出了难以替代和不可磨灭的贡献。
实验室中的小白鼠(图片来自网络)
实验小鼠“闯关记”
16世纪时,小鼠被少数科学家用于解剖学的研究;19世纪时,孟德尔曾试图用小鼠毛色来进行遗传学研究,但因其“异味”重,便将实验对象更换成了豌豆,之后从豌豆中发现了遗传学两大定律。
20世纪初,以威廉姆·厄内斯特·卡斯尔(William Ernest Castle)和吕西安·居埃诺(Lucien Cuénot)等为代表的科学家,开始在小鼠身上验证孟德尔遗传定律,他们证实了孟德尔遗传定律在动物中也是适用的,开启了哺乳动物遗传学研究的时代。
20世纪70年代末80年代初,分子生物学的兴起将小鼠研究带入了基因修饰的新时代
1980年,耶鲁大学的乔恩·戈登(Jon Gordon)等人通过原核注射受精卵创造了第一只转基因小鼠。随后,马里奥·卡佩基(Mario Capecchi)和奥利弗·史密斯(Oliver Smithies)制造出第一批基因敲除小鼠。
在随后的科学研究中,转基因动物技术飞速发展,转基因兔、转基因猪、转基因牛、转基因鸡、转基因鱼等陆续育成,并广泛应用于生物学、医学、药学、畜牧学等研究领域,取得了很多有价值的研究成果。(光明网基因科普团队)