点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:都在追求高情商,为什么生活里偏偏要低熵?
首页> 光明科普云> 图文 > 正文

都在追求高情商,为什么生活里偏偏要低熵?

来源:蝌蚪五线谱2023-05-08 20:02

  著名物理学家薛定谔曾在其著作《生命是什么》里说,“人活着就是在对抗熵增定律,生命以负熵为生。”

  清华大学科学史系教授吴国盛也曾表示,如果物理学只能留一条定律,我会留熵增定律。

  就连现代物理学的开创者爱因斯坦也认为“熵增定律”是科学定律之最。

  “熵增”到底是什么奇怪定律,引得无数科学家为之着迷?为什么生活中偏偏追求低熵?今天,就和大家浅谈一下“熵”。

  薛定谔 图源:维基百科

  熵(Entropy)这个概念,是由德国物理学家克劳修斯于1865年提出,希腊语中意为“内在”,即“一个系统内在性质的改变”,公式中一般记为S。

  熵代表了系统的混乱程度,系统越有序,熵值就越小;系统越无序,熵值就越大。

  由能量守恒定律我们知道能量的总和是不变的,可能量却无法百分百地转换,这些损耗的能量就是熵。

  熵增定律作为热力学第二定律的一种表述形式,认为在一个不受外界影响的孤立系统内,能量只能朝着一个方向转化,即从可利用到不可利用,从有效到无效,从有秩序到无秩序。

  是不是还是觉得云里雾里?

  举个例子,假设你的面前放置着一杯冰水和一杯常温水,你觉得哪个混乱度更高?相信大多数人会说冰水,但其实水的混乱度更高。我们都知道水和冰都是由水分子构成的,不同的是水分子和水分子之间的距离不一样。

  冰具有四面体晶体结构,这个四面体是通过氢键形成的,晶体中水分子之间距离小,排列规律有序。而液体水的形成拆散了大量的氢键,使得分子间排列变得无序,故熵变大,混乱度升高。

  此外,日常生活中类似的熵增现象也比比皆是。比如,系好的鞋带会松开,手机会越用越卡,家里铺得很整齐的床单睡过后会变乱等,这些都是熵增现象。

  做家长的人也一定深有感触,孩子们玩玩具时如果没有约束,一定会把屋子搅得天翻地覆、无从下脚。当我们把一个玩具看作是元素,把所有玩具看作为一个系统时,这个系统从整齐变成了混乱。这时候,要想找到某个心爱的玩具就变得非常困难,因为它可能出现在任何角落。这个场景也蕴含了熵增的原理。

  我们也可以通过可能性或概率的方式来考虑熵。比如屋子里有100个可以放置物品的位置,需要摆放20件物品。通过组合,可以算出20件物品放置在100个位置上,其总的放置方法是一个巨大的数字:

  如果将下图中上半部分的放置方法定义为“整洁”,也就是说图中20件可以移动的物品都放在了合适的位置,其余放置方法都统称为“混乱”。那么:

  长久地保持这样的“整洁”几乎是不可能事件,“混乱”则是必然,所以“整洁”很容易变为“混乱”,这说明了任何事物都是朝无序以及熵增方向发展的。

  熵增定律进一步认为,宇宙万物都是从一定的价值与结构开始,然后不可挽回地走向混乱、荒废。无论在地球上还是宇宙或任何地方建立起任何秩序,都会以周围环境更大的秩序混乱作为代价。

  就好像我们身处的巨型城市和城市中的摩天大楼,它们造成了能量的过度投入与四处耗散:例如煤炭燃烧的能量并没有消失,而是经过转化随着二氧化碳和其他气体一起散发到了空间中;食品的过度包装,也是在大量消耗地球能量;塑料、金属未经回收利用,被掩埋到环境中。

  这些都产生了熵或能量的废弃,因此,低熵农业、低熵工业、低熵生活、低熵社会等等已经成为人类为维系自身生存所必须做的事情。

  在默认情况下,我们生活中的每件事都处于高熵状态,除非我们倾注更多的精力和注意力。正如水从高处流到低处,电流从高势能流向低势能。如果没有外力做功的情况下,所有的事物都在向着无序和混乱发展。

  所以,当熵增定律回归日常生活中,我们知道自律比懒散痛苦、放弃比坚持轻松,但假如我们不去对抗熵增规律的话,大至宇宙,小到企业、团队,甚至个人的自我管理,都会随着时间的推移越发脱离掌控。

  撰稿人:邢美波北京建筑大学环境与能源工程学院副教授 北京市科协2021-2023年度青年人才托举工程被托举人

  编辑:蔡琳、董小娴

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 西安东站金属屋面顺利封顶

  • 探访上海首家银发商店 感受银发经济新活力

独家策划

推荐阅读
从中国地质调查局获悉,由该局广州海洋地质调查局自主研发的国内首台海底地层空间立体钻探与原位监测机器人,日前在南海1264米水深海域成功完成试验作业,各项性能全面达标,标志着我国深海勘探与地层原位监测技术取得重要突破。
2026-01-16 03:45
15日,国际学术期刊《自然》发表中国科研团队重大成果——由中国科学院大学主导、广西大学等多单位联合攻关的团队,首次直接观测到中子碰撞中的米格达尔效应,为人类搜寻轻暗物质粒子打开关键突破口,标志着我国在基础物理与探测器技术领域跻身国际前沿。
2026-01-16 03:45
15日12时01分,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功将阿尔及利亚遥感三号卫星A星发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功。
2026-01-16 03:45
进一步促进青年科技人才脱颖而出,需要凝聚多方合力、强化协同联动,从制度供给、环境营造、资源倾斜等方面精准施策、一体推进。
2026-01-16 03:45
展望未来,随着相关实践的不断普及和深化,数智赋能的流动公共服务将更加可及、公平普惠、精准高效,并为推进国家治理体系和治理能力现代化注入更多动能。
2026-01-16 03:45
中国医学科学院血液病医院(中国医学科学院血液学研究所)主任医师施均、研究员熊海清为通讯作者,博士后李若难、主治医师潘虹、主治医师张乐乐和研究生马佳秀为共同第一作者。
2026-01-16 09:04
他们提出一种全新多物理域融合计算系统,可利用后摩尔新器件支持傅里叶变换,使算力提升近4倍,为具身智能、通信系统等领域开辟新的可能。
2026-01-15 04:05
2025年11月,中国载人航天工程启动第一次应急发射任务,并取得圆满成功。此次任务,源于神舟二十号飞船疑似遭到空间微小碎片的撞击,返回任务被迫按下紧急“暂停键”。
2026-01-15 04:55
现代人工智能是先进计算的产物,也是赋能千行百业的技术。从早期符号主义在有限算力下的踯躅前行,到神经网络思想历经沉浮,直至大数据与图形处理器(GPU)的邂逅,
2026-01-15 04:55
项目骨干成员、中国科学院大学教授郑阳恒表示,团队还将与暗物质探测实验团队合作,将此次实验结果融入下一代探测器的研发中。
2026-01-15 09:03
对于娱乐及部分消费产业而言,当前的人形机器人还不适合作为长期自有资产,更适合通过“租赁+技术服务”的方式使用。
2026-01-15 09:02
最终,他们模拟出一种外形稳定的氰化氢晶体,其外形为顶端多面、底部圆润的圆柱体,长度约450纳米,整体形状类似切割后的宝石。
2026-01-15 09:00
从中国地震局获悉,近日,在离岸80千米的三峡江苏大丰海上风电场,全国首个海底综合地震电磁监测台站建成,这标志着我国地球物理场监测台网向海域拓展取得新进展。
2026-01-15 04:05
你有没有感觉,这些年的春天来得越来越不规律了?相比过去,有的地方春来早,有的地方春迟到。这不是你的错觉,全球变暖正导演着一场波及整个北半球的“春日变奏曲”。
2026-01-14 02:55
布局未来产业,要统筹经济性与战略性,综合考虑绝对优势和比较优势,深耕细分赛道,探索各具特色的发展路径和模式。
2026-01-14 09:03
实现了育种加代方法的颠覆性创新,整体上达到国际领先水平。
2026-01-14 19:12
相关研究成果发表于《植物生物技术》,为光信号驱动的绿色农业技术创新提供了全新思路。
2026-01-14 19:12
“十四五”以来,生态环境部卫星遥感监测能力显著提升,目前已在轨运行7颗生态环境卫星,初步构建起多星联动的生态环境卫星遥感监测体系。
2026-01-14 09:03
作为钢铁生产核心工序,高炉占生产总成本的70%左右,其长期稳定运行直接关系企业盈利状况。经过攻关,宝钢股份高炉AI大模型对炉温等关键指标的预测准确率达90%,实现对内部状态的高精度、高时效性感知。
2026-01-14 09:02
1月13日23时25分,我国在海南商业航天发射场使用长征八号甲运载火箭,成功将卫星互联网低轨18组卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。
2026-01-14 09:01
加载更多