点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:都在追求高情商,为什么生活里偏偏要低熵?
首页> 光明科普云> 图文 > 正文

都在追求高情商,为什么生活里偏偏要低熵?

来源:蝌蚪五线谱2023-05-08 20:02

  著名物理学家薛定谔曾在其著作《生命是什么》里说,“人活着就是在对抗熵增定律,生命以负熵为生。”

  清华大学科学史系教授吴国盛也曾表示,如果物理学只能留一条定律,我会留熵增定律。

  就连现代物理学的开创者爱因斯坦也认为“熵增定律”是科学定律之最。

  “熵增”到底是什么奇怪定律,引得无数科学家为之着迷?为什么生活中偏偏追求低熵?今天,就和大家浅谈一下“熵”。

  薛定谔 图源:维基百科

  熵(Entropy)这个概念,是由德国物理学家克劳修斯于1865年提出,希腊语中意为“内在”,即“一个系统内在性质的改变”,公式中一般记为S。

  熵代表了系统的混乱程度,系统越有序,熵值就越小;系统越无序,熵值就越大。

  由能量守恒定律我们知道能量的总和是不变的,可能量却无法百分百地转换,这些损耗的能量就是熵。

  熵增定律作为热力学第二定律的一种表述形式,认为在一个不受外界影响的孤立系统内,能量只能朝着一个方向转化,即从可利用到不可利用,从有效到无效,从有秩序到无秩序。

  是不是还是觉得云里雾里?

  举个例子,假设你的面前放置着一杯冰水和一杯常温水,你觉得哪个混乱度更高?相信大多数人会说冰水,但其实水的混乱度更高。我们都知道水和冰都是由水分子构成的,不同的是水分子和水分子之间的距离不一样。

  冰具有四面体晶体结构,这个四面体是通过氢键形成的,晶体中水分子之间距离小,排列规律有序。而液体水的形成拆散了大量的氢键,使得分子间排列变得无序,故熵变大,混乱度升高。

  此外,日常生活中类似的熵增现象也比比皆是。比如,系好的鞋带会松开,手机会越用越卡,家里铺得很整齐的床单睡过后会变乱等,这些都是熵增现象。

  做家长的人也一定深有感触,孩子们玩玩具时如果没有约束,一定会把屋子搅得天翻地覆、无从下脚。当我们把一个玩具看作是元素,把所有玩具看作为一个系统时,这个系统从整齐变成了混乱。这时候,要想找到某个心爱的玩具就变得非常困难,因为它可能出现在任何角落。这个场景也蕴含了熵增的原理。

  我们也可以通过可能性或概率的方式来考虑熵。比如屋子里有100个可以放置物品的位置,需要摆放20件物品。通过组合,可以算出20件物品放置在100个位置上,其总的放置方法是一个巨大的数字:

  如果将下图中上半部分的放置方法定义为“整洁”,也就是说图中20件可以移动的物品都放在了合适的位置,其余放置方法都统称为“混乱”。那么:

  长久地保持这样的“整洁”几乎是不可能事件,“混乱”则是必然,所以“整洁”很容易变为“混乱”,这说明了任何事物都是朝无序以及熵增方向发展的。

  熵增定律进一步认为,宇宙万物都是从一定的价值与结构开始,然后不可挽回地走向混乱、荒废。无论在地球上还是宇宙或任何地方建立起任何秩序,都会以周围环境更大的秩序混乱作为代价。

  就好像我们身处的巨型城市和城市中的摩天大楼,它们造成了能量的过度投入与四处耗散:例如煤炭燃烧的能量并没有消失,而是经过转化随着二氧化碳和其他气体一起散发到了空间中;食品的过度包装,也是在大量消耗地球能量;塑料、金属未经回收利用,被掩埋到环境中。

  这些都产生了熵或能量的废弃,因此,低熵农业、低熵工业、低熵生活、低熵社会等等已经成为人类为维系自身生存所必须做的事情。

  在默认情况下,我们生活中的每件事都处于高熵状态,除非我们倾注更多的精力和注意力。正如水从高处流到低处,电流从高势能流向低势能。如果没有外力做功的情况下,所有的事物都在向着无序和混乱发展。

  所以,当熵增定律回归日常生活中,我们知道自律比懒散痛苦、放弃比坚持轻松,但假如我们不去对抗熵增规律的话,大至宇宙,小到企业、团队,甚至个人的自我管理,都会随着时间的推移越发脱离掌控。

  撰稿人:邢美波北京建筑大学环境与能源工程学院副教授 北京市科协2021-2023年度青年人才托举工程被托举人

  编辑:蔡琳、董小娴

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 游西夏陵 开启新体验

  • 江苏扬州至镇江直流输电二期工程建成投运

独家策划

推荐阅读
近日,一个名为Moltbook的社交平台突然走红。与普通网络平台不同的是,Moltbook上的用户都是AI智能体。
2026-02-14 09:21
全球规模最大的200万吨/年柴油吸附分离装置目前在中国石油广西石化稳定运行。
2026-02-14 09:16
大连理工大学赵珺教授带领师生团队正抓紧时间,为实现可重复使用运载火箭关键部件的“复用检测”技术突破全力冲刺。
2026-02-14 09:12
一场刷新人类对宇宙极端物理过程认知的高能事件,被中国科学卫星清晰捕获并成功解读。
2026-02-14 09:11
近日,中国计量科学研究院研制的锶原子光晶格钟NIM-Sr1正式获准校准国际标准时间,实现了我国光钟参与校准国际标准时间“零”的突破。
2026-02-14 09:10
装上智能仿生手,截肢患者可以轻松拿起水杯喝水;高位截瘫患者用意念移动电脑光标,操控轮椅,指挥机器狗取外卖……
2026-02-13 09:50
凌晨2时,南昌西动车组运用一所检修库内灯光如昼。“接触网已断电,安全措施准备完毕,申请登顶!”确认许可后,国铁南昌局电务段南昌西车载设备车间工长曹准与工友一前一后登上动车组车顶,对北斗天线进行全面“体检”。
2026-02-13 09:45
近日,广西涠洲岛海域发生渔船撞击布氏鲸事件,鲸鱼受伤的画面令人揪心。虽然撞鲸的并非观鲸船,但这起事件也给正处于旺季的观鲸游敲响警钟——负责任地观鲸,有边界地亲近,人与自然和谐共生图景才能真正长久。
2026-02-13 09:43
核光钟通过真空紫外激光诱导原子核跃迁,具备更高精度与强抗干扰能力,且可实现便携化应用。但研制核光钟的道路上的一个核心瓶颈,是无法研制出能激发核跃迁的连续波激光光源。
2026-02-13 09:42
2021年,王勤团队开始研发低成本、适用于牧场环境的马匹体形自动测定设备。王勤团队搜集了全球90个马群体、近40个品种的基因组信息,构建了包含2000多个个体的参考面板——这是目前全球规模最大的马基因组参考数据库。
2026-02-13 09:36
一纸锦旗山水间,杏林春暖绿意长。
2026-02-12 11:01
金星与地球大小相近,同样诞生于太阳系内侧,却有着截然不同的命运。
2026-02-12 09:41
科技部十司相关负责同志解读《调查处理规定》。
2026-02-12 09:38
《细胞》封面:猕猴屏状核细胞分类与全脑联接图谱。在当前脑图谱大科学计划研究目标迈进绘制非人灵长类介观脑图谱的关键阶段,中国科学家仍在进一步集聚全球力量,持续扩大“朋友圈”。
2026-02-12 09:25
据悉,在战略上,植物星球计划还将整体提升全球生物多样性保护和实现碳中和的生态能力,构建植物科学领域全球大科学命题国际合作的新格局。
2026-02-12 09:17
马年将至,作为一种兼具力量与速度的动物,马正受到格外的关注。
2026-02-12 09:12
工业和信息化部等五部门近日印发《关于加强信息通信业能力建设支撑低空基础设施发展的实施意见》。加强监管能力体系建设,规划无人机专用号段,推动“一机一码一号”能力建设,探索标识解析在无人机领域的应用,形成无人机通信资源精细化管理。
2026-02-11 09:25
全球森林逐渐被快生树木主导,而稳定生态系统的慢生树种正在消失。“我们关注的是极为独特的物种,它们主要集中在生物多样性丰富、生态系统联系紧密的热带和亚热带地区。“此外,在现在和未来受到干扰的地区,非本地物种可能会加剧对光、水和养分的竞争,从而使本地树木更难生存。
2026-02-11 09:32
中国科学院动物研究所研究员王红梅带领的“灵长类胚胎发育的规律解析与体外模拟团队”,用27年的接力攻坚,把灵长类早期胚胎发育这个看不见、摸不着的“黑匣子”,变成了清晰可见的“生命剧本”。
2026-02-11 09:32
截至1月28日,“横竖都是世界第一”的贵州花江峡谷大桥累计接待游客突破130万人次,通行车辆超20万辆次,持续为区域发展注入新动能。大桥带来的发展溢出效应令人瞩目,而深入大桥肌理探查,你会发现,支撑起这座庞然大物的每根细钢丝,全部都是“中国造”。
2026-02-11 09:31
加载更多