点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:带你认识CCD、EMCCD、CMOS和sCMOS
首页> 科普频道> 天文前沿 > 正文

带你认识CCD、EMCCD、CMOS和sCMOS

来源:光明网2021-11-26 15:44

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  CCD的诞生与工作原理

  电荷耦合器件(Charge-coupled Device, CCD)是由贝尔实验室的威拉德·波伊尔和乔治·史密斯发明的。CCD是一种在光电效应基础上发展起来的半导体光电器件,自20世纪70年代后期开始广泛应用于天文观测,相较照相底片和光电倍增管,它具有量子效率高、动态范围大、线性好等优点。

带你认识CCD、EMCCD、CMOS和sCMOS

图1. CCD的发明人威拉德·波伊尔(左)和乔治·史密斯(右),二人因此工作获得2009年诺贝尔物理学[1]

  CCD的工作过程主要包括:电荷产生、电荷收集、电荷包转移和电荷包测量。光子入射到CCD上激发光电子,光电子被收集在一起形成电荷包,电荷包依次从一个像素转移到另一个像素,最终传输到输出端,完成对电荷包的测量,如图2所示[2]

带你认识CCD、EMCCD、CMOS和sCMOS

图2. CCD的工作过程:电荷产生、电荷收集、电荷包转移和电荷包测量[2]

  CCD的分类

  CCD种类有很多,天文观测中常用的有全帧CCD (Full-Frame CCD, FFCCD),电子倍增CCD (Electron-Multiplying CCD, EMCCD)等。

  全帧CCD具有高密度像素阵列,能够产生高分辨率的数字图像。全帧CCD在读取时,积累的电荷必须首先垂直转移到下一行,由串行读出寄存器水平读出每个像素,重复上述步骤,直至全部转移完毕,这称为“逐行扫描”,如图3所示。由于全帧CCD所有像素都参与感光,因此在电荷传输时,这些像素将被用于处理电荷传输而不能继续捕捉新的影像。这时如果探测器继续接受光线,就会影响成像质量,所以全帧CCD需要配备机械快门,用于探测器读出过程中遮挡入射光。机械快门的缺点是存在快门效应、故障率高、使用寿命有限等。

带你认识CCD、EMCCD、CMOS和sCMOS

图3. 全帧CCD图像读出过程示意图[4]

  EMCCD主要包括成像区、存储区和输出放大器。不同于全帧CCD,EMCCD在串行读出寄存器和输出放大器之间有数百个增益寄存器,在增益寄存器中分布有倍增电极,作用是加速载流子,高速的电荷会激发更多的载流子,从而实现信号放大,如图4所示[5]

带你认识CCD、EMCCD、CMOS和sCMOS

图4. EMCCD结构示意图[5]

  EMCCD的典型工作模式为感光区按照指定曝光时间积分,待曝光结束后感光区电荷迅速转移到存储区,感光区可立刻进入下一次曝光;与此同时,存储区的电荷从上到下逐行进行转移;在读出过程中电荷转移至增益寄存器进行放大并读出。这种工作模式读出速度快,可以无需机械快门,通常可以每秒获取十几张图像,能够满足一些科学目标对短曝光、快读出的需求。

  在弱光成像时,EMCCD相较CCD具有更高的灵敏度,这是由于EMCCD可以在不增加读出噪声的情况下,通过增益寄存器放大来提高图像的信噪比,而CCD只能通过增加曝光时间提高信噪比;但在观测较亮目标时,EMCCD在信号放大过程中会引入其它噪声,在相同曝光时间下,CCD或许是更好的选择。

  CMOS与sCMOS

  互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor, CMOS)诞生于20世纪80年代。CMOS图像生成机理同样是光电效应,它的工作过程也包括电荷产生、电荷收集、电荷包转移和电荷包测量。与CCD不同的是CMOS每个像素都集成了模拟电路,四个过程在一个像素里完成,即每个像素输出的是转换完的电压信号。

带你认识CCD、EMCCD、CMOS和sCMOS

图5. CCD将电荷逐行扫描至输出放大器,然后将其转换为电压信号; CMOS则在像素内将电荷转换为电压信号[6]

  由于结构上的差异,传统CMOS相机与CCD相机相比噪声高、填充因子低、量子效率低、动态范围小等,所以没有被广泛应用于专业天文观测。上世纪90年代末,随着手机摄像功能的开发,以及手机行业的快速发展,CMOS技术发展迅速,CMOS缺点得到了有效改善。2009年出现了科学级CMOS(scientific CMOS, sCMOS)技术,该技术基于CMOS的架构,通过片上相关多采样来降低噪声、调整半导体掺杂比例等提高像素满阱容量、大小增益双路读出合成高动态范围图像技术提高动态范围、二维无缝拼接技术实现大靶面等,克服了CMOS的一些缺点,实现了低噪声、高帧频、高动态范围、高分辨率、大靶面等。sCMOS作为CMOS一种类型,主要应用于科研领域。

  CMOS应用电子快门,如卷帘快门和全局快门。对于卷帘快门来说,图像是逐行读出的,这与机械快门很像,在拍摄快速移动的物体时会出现斜坡图像、晃动等现象。全局快门像素在曝光时间积累电荷,曝光结束后所有像素同时重置、同时传输到存储区域并读出,所以拍摄快速移动物体没有变形。相比全局快门像素,卷帘快门像素读出噪声低、读出速度快,适合拍摄与相机相对静止或者一些要求低噪声和高帧频的目标图像;全局快门像素则更适合拍摄与相机之间具有相对高速运动的目标图像。电子快门相较机械快门,无需考虑快门效应和快门寿命,在实际使用中可以实现短曝光,同时维护、维修方便。

带你认识CCD、EMCCD、CMOS和sCMOS

图6. 使用卷帘快门在拍摄快速移动物体时会出现变形,全局快门则不会[7]

  目前sCMOS已被广泛应用于生物、物理等科研领域,而CMOS则取代了CCD,成为了民用领域最主要的感光器件。天文专用相机与生活中常见的消费级数码相机差别较大,主要区别有:1. 天文专用相机使用的感光芯片像素较大(较大的像素通常具有较大的满阱电荷)、噪声较低,所以具有较大的动态范围;使用16-bit模拟/数字转换器,可以获得16-bit的数字图像;除此之外,还具有线性好、量子效率高等优点;2.天文专用相机通常需要对感光芯片进行深度制冷,来降低暗电流,芯片需封装在密闭空间里,所以体型较大、结构复杂等;3.天文专用相机需要连接电脑,使用专用控制软件对其设置、拍摄及显示等。

带你认识CCD、EMCCD、CMOS和sCMOS

图7. 左为科学级天文专用相机,右为消费级数码相机(图源:网络)

带你认识CCD、EMCCD、CMOS和sCMOS

图8. 使用天文专用相机拍摄的“梅西耶天体M81和M82”(图源:邱鹏 摄,使用器材:106mm口径望远镜、LRGB滤光片和天文专用制冷 CCD,LRGB四通道总曝光时间约28小时,单次最长曝光时间30分钟)

带你认识CCD、EMCCD、CMOS和sCMOS

图9. 使用数码单反相机拍摄的“沙漠中的银河”(图源:邱鹏 摄,使用器材:数码单反相机,参数设置:焦距14mm、光圈f/2.8、ISO6400、曝光时间30秒)

  小结

  全帧CCD、EMCCD,CMOS和sCMOS作为半导体感光器件,因其结构不同,特点不同。在实际天文观测中,根据观测需求选择合适的探测器,才能事半功倍。

  参考文献:

  [1] http://tech.sina.com.cn/digi/dc/2009-10-09/05373490569.shtml

  [2] James Janesick. Dueling Detectors. SPIE, 2002: pp30-33

  [3] C.R Kitchin编著,杨大卫等译,胡景耀等校. 天体物理方法. 原书第四版. 科学出版社,2009,1-23,149-160

  [4] Introduction to CCDs,

  http://spiff.rit.edu/classes/ast613/lectures/ccds_kids/ccds_kids.html

  [5] What is an Electron Multiplying CCD (EMCCD) Camera,

  https://andor.oxinst.com/learning/view/article/electron-multiplying-ccd-cameras

  [6] Dave Litwiller, Dalsa. CMOS vs. CCD: Maturing Technologies, Maturing Markets. Phoeonics Spectra. 2005

  [7] Rolling shutter VS Global shutter,

  https://www.premiumbeat.com/blog/know-the-basics-of-global-shutter-vs-rolling-shutter/

  作者简介:邱鹏,中国科学院国家天文台工程师,主要从事科学级天文探测器性能检测与应用、天文望远镜控制、天文技术与方法研究。

  文稿编辑:赵宇豪

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 小互的乌镇漫步:一场古镇与数字的对话

独家策划

推荐阅读
遥远恒星大气爆发活动的起源区域有哪些特征,人类至今知之甚少。但科学家们正在通过分析太阳爆发活动,探究恒星大气爆发活动的奥秘。
2025-11-06 10:35
这几年,子午工程已经有不少应用场景。例如在航天员出舱时,提前进行空间天气预报,避免在太阳风暴来临、空间有高能粒子时出舱,保护航天员健康安全。
2025-11-06 10:34
智能穿戴设备产品形态从手环、手表延伸至耳机、眼镜、戒指等形式,新供给创造新需求,改变了消费者生活方式,推动着健康管理、时尚消费与技术创新的深度融合。
2025-11-06 10:32
电动车充电慢、冬天“趴窝”、安全隐患大……这些困扰电动出行的难题,迎来了突破性解决方案。
2025-11-06 10:19
目前,我国约70%的待发现油气资源蕴藏在深层超深层、复杂构造及非常规等新领域。如何找到这些宝贵的油气资源,精准绘制“藏宝图”?
2025-11-06 10:17
天问一号环绕器利用高分辨率相机于近日成功观测到星际天体——阿特拉斯(3I/ATLAS)。其间,天问一号环绕器距离目标天体约3000万千米,是目前观测该天体距离最近的探测器之一。
2025-11-06 09:56
为确保航天员生命健康安全和任务圆满成功,经研究决定,原计划11月5日实施的神舟二十号返回任务将推迟进行。
2025-11-05 10:59
4日,国务院安委会办公室、应急管理部、国家消防救援局在京举行2025年全国消防宣传月活动启动仪式。
2025-11-05 04:20
当前,人工智能作为引领新一轮科技革命和产业变革的战略性技术,深刻改变人类生产生活方式。
2025-11-05 03:50
近日,搭载神舟二十一号载人飞船的长征二号F遥二十一运载火箭在酒泉卫星发射中心点火发射,发射任务取得圆满成功。
2025-11-05 04:20
科技论文是衡量科技创新水平的重要指标。
2025-11-05 04:20
近年来,中国审定推出了一批高产稳产、绿色节水、优质专用小麦新品种。2021年,这一情况出现了转变:“圣泽901”“广明2号”“沃德188”等3个国产白羽肉鸡品种通过审定,中国白羽肉鸡育种攻关实现从0到1的实质性突破。
2025-11-04 09:06
党的二十届四中全会提出,“加快高水平科技自立自强,引领发展新质生产力”“加快经济社会发展全面绿色转型,建设美丽中国”。
2025-11-04 04:25
人工智能的出现源于人类对提升生产效率与改善生活品质的持续追求,这一根本动因要求其发展必须始终以服务人类、增进福祉为核心。
2025-11-04 04:25
如何在新学期开展针对性训练,做好运动前准备和运动后体能恢复,已成为受到广泛重视的问题。
2025-11-04 04:25
我所在的他山中学,是贵州黔北山区的一所普通县中,有着4000多名师生。作为校长,我常常在思考:在现有条件下,如何为学生开辟更广阔的成长路径?在日复一日的探索中,
2025-11-04 04:25
11月3日11时47分,我国在文昌航天发射场使用长征七号改运载火箭,成功将遥感四十六号卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。
2025-11-04 04:35
鸟类是生态系统的重要组成部分,是评估区域生态环境质量的关键指示物种,保护鸟类是推动人与自然和谐共生的关键环节。我国是世界上鸟类资源最为丰富的国家之一,
2025-11-03 05:05
人民城市人民建,人民城市为人民。2025年7月,中央城市工作会议指出,“要深刻把握我国城市发展所处历史方位”,“认真践行人民城市理念”,“以建设创新、宜居、美丽、韧性、文明、
2025-11-03 05:05
“从南极到北极,从草原到荒漠,到处都有昆虫的踪迹……”第三十二届中国杨凌农业高新科技成果博览会期间,西北农林科技大学博览园昆虫博物馆内,参会观众被讲解员李姗姗的讲述深深吸引。
2025-11-03 05:05
加载更多