点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:带你认识CCD、EMCCD、CMOS和sCMOS
首页> 科普频道> 天文前沿 > 正文

带你认识CCD、EMCCD、CMOS和sCMOS

来源:光明网2021-11-26 15:44

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  CCD的诞生与工作原理

  电荷耦合器件(Charge-coupled Device, CCD)是由贝尔实验室的威拉德·波伊尔和乔治·史密斯发明的。CCD是一种在光电效应基础上发展起来的半导体光电器件,自20世纪70年代后期开始广泛应用于天文观测,相较照相底片和光电倍增管,它具有量子效率高、动态范围大、线性好等优点。

带你认识CCD、EMCCD、CMOS和sCMOS

图1. CCD的发明人威拉德·波伊尔(左)和乔治·史密斯(右),二人因此工作获得2009年诺贝尔物理学[1]

  CCD的工作过程主要包括:电荷产生、电荷收集、电荷包转移和电荷包测量。光子入射到CCD上激发光电子,光电子被收集在一起形成电荷包,电荷包依次从一个像素转移到另一个像素,最终传输到输出端,完成对电荷包的测量,如图2所示[2]

带你认识CCD、EMCCD、CMOS和sCMOS

图2. CCD的工作过程:电荷产生、电荷收集、电荷包转移和电荷包测量[2]

  CCD的分类

  CCD种类有很多,天文观测中常用的有全帧CCD (Full-Frame CCD, FFCCD),电子倍增CCD (Electron-Multiplying CCD, EMCCD)等。

  全帧CCD具有高密度像素阵列,能够产生高分辨率的数字图像。全帧CCD在读取时,积累的电荷必须首先垂直转移到下一行,由串行读出寄存器水平读出每个像素,重复上述步骤,直至全部转移完毕,这称为“逐行扫描”,如图3所示。由于全帧CCD所有像素都参与感光,因此在电荷传输时,这些像素将被用于处理电荷传输而不能继续捕捉新的影像。这时如果探测器继续接受光线,就会影响成像质量,所以全帧CCD需要配备机械快门,用于探测器读出过程中遮挡入射光。机械快门的缺点是存在快门效应、故障率高、使用寿命有限等。

带你认识CCD、EMCCD、CMOS和sCMOS

图3. 全帧CCD图像读出过程示意图[4]

  EMCCD主要包括成像区、存储区和输出放大器。不同于全帧CCD,EMCCD在串行读出寄存器和输出放大器之间有数百个增益寄存器,在增益寄存器中分布有倍增电极,作用是加速载流子,高速的电荷会激发更多的载流子,从而实现信号放大,如图4所示[5]

带你认识CCD、EMCCD、CMOS和sCMOS

图4. EMCCD结构示意图[5]

  EMCCD的典型工作模式为感光区按照指定曝光时间积分,待曝光结束后感光区电荷迅速转移到存储区,感光区可立刻进入下一次曝光;与此同时,存储区的电荷从上到下逐行进行转移;在读出过程中电荷转移至增益寄存器进行放大并读出。这种工作模式读出速度快,可以无需机械快门,通常可以每秒获取十几张图像,能够满足一些科学目标对短曝光、快读出的需求。

  在弱光成像时,EMCCD相较CCD具有更高的灵敏度,这是由于EMCCD可以在不增加读出噪声的情况下,通过增益寄存器放大来提高图像的信噪比,而CCD只能通过增加曝光时间提高信噪比;但在观测较亮目标时,EMCCD在信号放大过程中会引入其它噪声,在相同曝光时间下,CCD或许是更好的选择。

  CMOS与sCMOS

  互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor, CMOS)诞生于20世纪80年代。CMOS图像生成机理同样是光电效应,它的工作过程也包括电荷产生、电荷收集、电荷包转移和电荷包测量。与CCD不同的是CMOS每个像素都集成了模拟电路,四个过程在一个像素里完成,即每个像素输出的是转换完的电压信号。

带你认识CCD、EMCCD、CMOS和sCMOS

图5. CCD将电荷逐行扫描至输出放大器,然后将其转换为电压信号; CMOS则在像素内将电荷转换为电压信号[6]

  由于结构上的差异,传统CMOS相机与CCD相机相比噪声高、填充因子低、量子效率低、动态范围小等,所以没有被广泛应用于专业天文观测。上世纪90年代末,随着手机摄像功能的开发,以及手机行业的快速发展,CMOS技术发展迅速,CMOS缺点得到了有效改善。2009年出现了科学级CMOS(scientific CMOS, sCMOS)技术,该技术基于CMOS的架构,通过片上相关多采样来降低噪声、调整半导体掺杂比例等提高像素满阱容量、大小增益双路读出合成高动态范围图像技术提高动态范围、二维无缝拼接技术实现大靶面等,克服了CMOS的一些缺点,实现了低噪声、高帧频、高动态范围、高分辨率、大靶面等。sCMOS作为CMOS一种类型,主要应用于科研领域。

  CMOS应用电子快门,如卷帘快门和全局快门。对于卷帘快门来说,图像是逐行读出的,这与机械快门很像,在拍摄快速移动的物体时会出现斜坡图像、晃动等现象。全局快门像素在曝光时间积累电荷,曝光结束后所有像素同时重置、同时传输到存储区域并读出,所以拍摄快速移动物体没有变形。相比全局快门像素,卷帘快门像素读出噪声低、读出速度快,适合拍摄与相机相对静止或者一些要求低噪声和高帧频的目标图像;全局快门像素则更适合拍摄与相机之间具有相对高速运动的目标图像。电子快门相较机械快门,无需考虑快门效应和快门寿命,在实际使用中可以实现短曝光,同时维护、维修方便。

带你认识CCD、EMCCD、CMOS和sCMOS

图6. 使用卷帘快门在拍摄快速移动物体时会出现变形,全局快门则不会[7]

  目前sCMOS已被广泛应用于生物、物理等科研领域,而CMOS则取代了CCD,成为了民用领域最主要的感光器件。天文专用相机与生活中常见的消费级数码相机差别较大,主要区别有:1. 天文专用相机使用的感光芯片像素较大(较大的像素通常具有较大的满阱电荷)、噪声较低,所以具有较大的动态范围;使用16-bit模拟/数字转换器,可以获得16-bit的数字图像;除此之外,还具有线性好、量子效率高等优点;2.天文专用相机通常需要对感光芯片进行深度制冷,来降低暗电流,芯片需封装在密闭空间里,所以体型较大、结构复杂等;3.天文专用相机需要连接电脑,使用专用控制软件对其设置、拍摄及显示等。

带你认识CCD、EMCCD、CMOS和sCMOS

图7. 左为科学级天文专用相机,右为消费级数码相机(图源:网络)

带你认识CCD、EMCCD、CMOS和sCMOS

图8. 使用天文专用相机拍摄的“梅西耶天体M81和M82”(图源:邱鹏 摄,使用器材:106mm口径望远镜、LRGB滤光片和天文专用制冷 CCD,LRGB四通道总曝光时间约28小时,单次最长曝光时间30分钟)

带你认识CCD、EMCCD、CMOS和sCMOS

图9. 使用数码单反相机拍摄的“沙漠中的银河”(图源:邱鹏 摄,使用器材:数码单反相机,参数设置:焦距14mm、光圈f/2.8、ISO6400、曝光时间30秒)

  小结

  全帧CCD、EMCCD,CMOS和sCMOS作为半导体感光器件,因其结构不同,特点不同。在实际天文观测中,根据观测需求选择合适的探测器,才能事半功倍。

  参考文献:

  [1] http://tech.sina.com.cn/digi/dc/2009-10-09/05373490569.shtml

  [2] James Janesick. Dueling Detectors. SPIE, 2002: pp30-33

  [3] C.R Kitchin编著,杨大卫等译,胡景耀等校. 天体物理方法. 原书第四版. 科学出版社,2009,1-23,149-160

  [4] Introduction to CCDs,

  http://spiff.rit.edu/classes/ast613/lectures/ccds_kids/ccds_kids.html

  [5] What is an Electron Multiplying CCD (EMCCD) Camera,

  https://andor.oxinst.com/learning/view/article/electron-multiplying-ccd-cameras

  [6] Dave Litwiller, Dalsa. CMOS vs. CCD: Maturing Technologies, Maturing Markets. Phoeonics Spectra. 2005

  [7] Rolling shutter VS Global shutter,

  https://www.premiumbeat.com/blog/know-the-basics-of-global-shutter-vs-rolling-shutter/

  作者简介:邱鹏,中国科学院国家天文台工程师,主要从事科学级天文探测器性能检测与应用、天文望远镜控制、天文技术与方法研究。

  文稿编辑:赵宇豪

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 重庆巫山:初冬美景引客来

  • 120余家品牌亮相2025非遗品牌推广周

独家策划

推荐阅读
燕矶长江大桥是亚洲首个专业货运枢纽机场——鄂州花湖国际机场的重要配套工程,是鄂黄第二过江通道的重要组成部分。
2025-11-24 09:02
11月23日,由中国半导体行业协会、中国电子信息产业发展研究院主办的第二十二届中国国际半导体博览会在北京开幕。
2025-11-24 03:15
从国家管网集团西部管道有限责任公司获悉,截至11月21日,我国最长原油管道——西部原油管道实现安全平稳运行18年,累计输送原油超2亿吨。
2025-11-24 03:15
作为中国和南非两国合作推动科普教育的重要实践,中国科学技术馆与南非Sci-Bono科学中心合作建设的“倾听科学空间”21日正式向公众开放。逾百嘉宾和观众到场体验。
2025-11-24 03:15
为AI4S领域培养兼具理论素养与产业落地能力的复合型人才,同时助力企业技术创新与行业生态构建。
2025-11-24 03:15
2025年度“十大”科普热词从科技、文化、社会等维度,综合勾勒出2025年我国科普事业发展、科技前沿动态、科学传播与社会文化融合的整体态势和核心方向。
2025-11-21 15:11
枫清科技与麒麟软件达成战略合作,双方将围绕AI技术创新、产品研发、市场拓展等方面开展深度合作,共同推动信创产业生态的完善与发展。
2025-11-21 13:13
走进国家重要野生植物种质资源库辰山中心种子冷库,零下20摄氏度的寒气扑面而来,一排排整齐编号的收纳容器中,是进入“深度睡眠”状态的各类野生植物种子。
2025-11-21 09:53
小雪时节,容易发生感冒、皮肤干燥、关节疼痛及咳嗽等不适,大多因为寒燥外袭、津液失调。
2025-11-21 09:52
当前,关于精神疾病与心理治疗,公众还有哪些常见误解?带着这些问题,本报记者采访了北京安定医院多位专家。
2025-11-21 09:49
2023年11月,“天衍”量子计算云平台正式发布,截至目前,访问量已突破3700万次,覆盖海内外60多个国家和地区的用户,实验任务数超过270万个。
2025-11-21 09:47
20日,记者从南京大学获悉,该校沈树忠院士团队的侯金波博士等人记录了湖北省通山县一处距今约5.4亿年的埃迪卡拉纪化石宝库,并将其命名为“通山特异埋藏化石库”。
2025-11-21 09:38
完成第一阶段6G技术试验,形成超过300项关键技术储备,资本加速布局6G生态……尽管6G网络预计将在2030年开始部署,但我国6G产业布局正加速铺开,呈现政策护航、技术攻坚、资本活跃的特征。
2025-11-20 09:11
谷山梁3吉瓦/12.8吉瓦时储能电站项目建成后,每年预计可向电网输送36亿千瓦时的清洁能源电力。“独立新型储能电站放电时为发电企业,充电时视同电力用户,电网的峰谷电价价差形成利润空间,吸引企业投身于此。
2025-11-20 09:11
中国第一辆蒸汽机车就诞生在我的家乡唐山。我为之骄傲。为此,大学学习机械制造与设计专业的我,毕业后,就一头扎进轨道交通检测设备研发领域。
2025-11-20 04:25
常有人说,发动机是火箭的“心脏”。而我从事的工作是,液体火箭发动机推力燃烧系统高精密产品的生产加工,所以大家都叫我“火箭心脏钻刻师”。
2025-11-20 04:25
四川全口径外送电量已超1.9万亿千瓦时。这一规模相当于江苏、浙江、安徽三省全年用电量之和,标志着四川落实“西电东送”能源战略取得丰硕成果,
2025-11-20 04:25
大国重器又传好消息!江门中微子实验(JUNO)装置建成运行仅两个月,就取得首个物理成果——测量太阳中微子振荡参数,结果比此前实验的最好精度提升了1.5~1.8倍。
2025-11-20 04:35
为促进卫星导航定位产业有序发展,维护国家地理信息安全,我国将对卫星导航定位基准站实行统一规划、统一标准、统一监管。针对目前基准站重复建设、存在数据安全隐患等主要问题,办法规定自然资源部会同有关部门制定全国基准站建设布局规划。
2025-11-19 09:52
18日,我国首个配置冷却塔的“华龙一号”核电机组——中广核山东招远核电项目1号机组顺利完成核岛第一罐混凝土浇筑,标志着该项目一期工程建设全面启动。
2025-11-19 09:51
加载更多