点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:太阳射电成像的数字相关器
首页> 科普频道> 天文前沿 > 正文

太阳射电成像的数字相关器

来源:光明网2021-08-11 15:29

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  自上世纪50年代起,射电观测技术在天文和空间科学领域得到了广泛的应用。我们熟知的空间科学工程项目:如登月舱着陆、火星探测,射电望远镜作为深空测控的“鹰眼”,在其中发挥了重要作用;而像在“黑洞成像”这一历史性的事件中,世界各地的大型射电望远镜及阵列联合通过“甚长基线干涉(VLBI)”技术对M87星系中的特大质量黑洞进行了射电成像。

  对于离我们最近的恒星—太阳,太阳物理学家已经从多个波段(近红外、光学、紫外)进行了观测研究。就像医学上的CT成像,不同波长的观测对应太阳结构的不同深度,射电波段,尤其是厘米-分米波段的观测能够让我们了解太阳日冕的丰富信息。

  射电望远镜需要对接收到的太阳射电信号进行实时快速处理,产生用于科学研究的有效数据(频谱、图像等)。这要求射电望远镜的后端数字信号处理(digital signalprocessing:DSP)单元具备相当的“肌肉灵活性”。

  太阳射电成像的数字相关器

图1. DSP的“齿轮”驱动作用(图源:作者)

  要对太阳进行射电成像观测,最常用的技术是综合孔径干涉成像。通常一个基于综合孔径干涉成像的射电望远镜组成的观测阵列包括:天线前端、信号传输线、模拟信号接收单元、数字相关器和图像合成处理单元。射电观测成像其实和人眼成像的原理类似,大脑视觉皮层在对物体成像前,首先要获得物体在时间和空间上的一系列相关信号。

  这些相关信号由外侧膝状体(lateral geniculate nucleus: LGN)提供。它们进行一系列模拟计算:包括时间上的相关/解释以及空间上的相关。由此产生的输出到大脑视觉皮层进行下一步处理,以实现物体空间的三维表示。

太阳射电成像的数字相关器

图2. 射电阵列成像和人眼视觉成像类比(图源:作者)

  在对太阳进行综合孔径干涉成像观测的过程中,数字相关器(digitalcorrelator)起到的作用和人眼成像中的LGN类似。在太阳射电信号被两个天线接收到后,经过模拟和数字滤波器组分离出需要观测的窄带信号,这两路窄带信号具有一定相关性。数字相关器对这种相关性进行测量,得到所谓的“可见度函数”。

太阳射电成像的数字相关器

图3. 数字相关器的组成(图源:作者)

  那么数字相关器的工作原理是什么呢?数字相关器在空间频率域上计算任意两路信号之间的互相关运算结果,其形式是一个复数。其中相位部分包含了可见度函数的相位,偏离图像中心(相位中心)的变化源会在可见度函数的相位上产生相应变化。

  数字相关器能够得到天线阵列中每两个天线接收之间的互相关输出,从而得到可见度函数在空间频率域的分布。这种分布通过后端图像合成处理单元做Fourier变换和“去卷积”处理后便能得到太阳的射电图像。

太阳射电成像的数字相关器

图4.两路射电信号之间相关测量输出(图源:作者)

  太阳射电成像的最终目标是在多个频率上合成太阳射电图像,我们首先把整个观测频率波段分成一系列的频率平面“切片层”,在数字信号处理中称为“频谱通道化”,一般用多相滤波器组或多相FFT来实现。每个频率通道输出代表所要观测的频率信号。在每个频率“切片层”上对所有天线的信号进行量化和互相关运算,就得到不同频率的互相关输出。

太阳射电成像的数字相关器

图5. 多频率下的互相关运算单元“矩阵”(图源:作者)

  数字相关器在每个频率“平面”上的计算输出类似一个相关矩阵。早期的数字相关器由于数字电路的性能所限,多采用模拟滤波器组和1-bit相关,模拟通道信号被数字采集后,在相关之前先被量化成“-1”或“+1”2种状态,这2种状态可以用1个bit位来编码,以降低后续相关运算和数据传输的压力。

  随着大规模数字集成电路的发展,尤其是高性能现场可编程门阵列(FPGA)芯片的出现,数字信号处理和运算能力有了飞跃式提升,频谱通道化在数字信号处理单元中实现,与模拟滤波器组相比,更加稳定,性能精度也更好。后续的相关运算也不断提升精度,2-bit相关、4-bit相关等。如果将频谱信号传输到GPU中做后续处理,还可以实现更高精度的相关运算。

  太阳射电观测的特点是:信号变化范围大(从宁静到爆发的射电流量可增长数千倍到上万倍)、变化快(毫秒级)。这要求射电望远镜后端的信号处理系统有足够的动态范围,并能够实时处理动态信号变化。数字相关器作为信号处理系统的核心部分,不仅实现了太阳射电信号从模拟域到数字域的转化,还使快速射电成像从可能变为现实。

  作者简介:刘飞,国家天文台明安图观测基地高级工程师,主要研究方向为射电天文DSP后端方法和技术。

  文稿编辑:赵宇豪

[ 责编:涂子怡 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 习近平会见国际奥委会主席考文垂和终身名誉主席巴赫

独家策划

推荐阅读
11月9日,国航C919重飞“两航起义”航线主题航班从香港飞抵天津,重温76年前“两航起义”的北飞航程,致敬“两航起义”爱国壮举。“两航”后代陈绍曾介绍,76年前,“两航起义”飞行员从香港驾驶12架飞机飞抵北京、天津,建设新中国民航事业。
2025-11-10 10:10
“超级细菌”指那些对多种抗生素具有耐药性的细菌。研究人员在一种常用药物的生产流程中意外发现一种很有前景的强效抗生素,能够杀死耐甲氧西林金黄色葡萄球菌等“超级细菌”。
2025-11-10 10:09
11月9日,2025年世界互联网大会乌镇峰会在浙江乌镇闭幕。世界互联网大会秘书长任贤良用“聚焦构建网络空间命运共同体理念”“关注创新发展热点议题”“不断擦亮峰会品牌”“持续贡献智慧力量”概括了本届峰会的特点。
2025-11-10 10:08
使用供暖设备有哪些注意事项?一起来看!
2025-11-10 10:17
我们将围绕推进新型工业化人才需求,顺应实体经济和数字经济融合发展趋势,立足产业需求侧职责定位,多措并举加快推动制造业技能人才队伍建设。深入开展产业基础再造工程、制造业数字化转型行动等,依托项目培养高技能人才。
2025-11-10 10:07
ASC26报名链接:https://www.asc-events.net/StudentChallenge/ASC26/Register.php
2025-11-07 15:58
北京时间2025年11月6日11:00—14:00,地磁发生强烈扰动,达到大地磁暴水平(Kp=7),为橙色警报级别。
2025-11-07 13:39
阿特拉斯的成功观测是天问一号的一次重要拓展任务,利用探测器观测暗弱天体为天问二号开展小行星探测进行了技术试验,积累了经验
2025-11-07 09:37
天问一号环绕器利用高分辨率相机近日成功观测到星际天体——阿特拉斯。”据介绍,天问一号探测器于2021年2月进入火星环绕轨道,迄今已稳定运行4年8个月,目前状态良好。
2025-11-07 09:31
与会嘉宾围绕“人工智能+”深度融入产业创新发展等话题进行深入探讨,凝聚产业国际合作发展共识,推动构建开放包容的人工智能产业创新生态。
2025-11-07 09:29
谈及人形机器人何时能从“炫技”转向应用落地,优必选科技副总裁焦继超提出了分阶段的发展预期。中国电子学会机器人分会青年副主任委员、乐聚智能(深圳)股份有限公司董事长冷晓琨表示,预计明年人形机器人在工业领域会出现采购交付数量过万台的企业。
2025-11-07 09:28
“十四五”时期,我们将目光投向脑疾病领域,通过脑机接口技术,实现了“诊断—监测—治疗—预测”一体的大脑实时“观景”。一方面,脑机接口技术可以让神经系统“说话”,通过高精度解码神经信号实现对大脑的“意念读取”和精准诊断。
2025-11-07 09:18
遥远恒星大气爆发活动的起源区域有哪些特征,人类至今知之甚少。但科学家们正在通过分析太阳爆发活动,探究恒星大气爆发活动的奥秘。
2025-11-06 10:35
这几年,子午工程已经有不少应用场景。例如在航天员出舱时,提前进行空间天气预报,避免在太阳风暴来临、空间有高能粒子时出舱,保护航天员健康安全。
2025-11-06 10:34
智能穿戴设备产品形态从手环、手表延伸至耳机、眼镜、戒指等形式,新供给创造新需求,改变了消费者生活方式,推动着健康管理、时尚消费与技术创新的深度融合。
2025-11-06 10:32
电动车充电慢、冬天“趴窝”、安全隐患大……这些困扰电动出行的难题,迎来了突破性解决方案。
2025-11-06 10:19
目前,我国约70%的待发现油气资源蕴藏在深层超深层、复杂构造及非常规等新领域。如何找到这些宝贵的油气资源,精准绘制“藏宝图”?
2025-11-06 10:17
天问一号环绕器利用高分辨率相机于近日成功观测到星际天体——阿特拉斯(3I/ATLAS)。其间,天问一号环绕器距离目标天体约3000万千米,是目前观测该天体距离最近的探测器之一。
2025-11-06 09:56
为确保航天员生命健康安全和任务圆满成功,经研究决定,原计划11月5日实施的神舟二十号返回任务将推迟进行。
2025-11-05 10:59
4日,国务院安委会办公室、应急管理部、国家消防救援局在京举行2025年全国消防宣传月活动启动仪式。
2025-11-05 04:20
加载更多