点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:太阳射电天文学的观测技术
首页> 科普频道> 天文前沿 > 正文

太阳射电天文学的观测技术

来源:光明网2021-08-09 10:59

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  太阳射电观测有记录的历史最早可以追溯到1890年,托马斯·爱迪生提出利用电缆缠绕铁矿石的方法探测太阳射电信号,然而这一试验并没有付诸实施。英国物理学家Sir Oliver J. Lodge在1897-1900年间建造了一个比爱迪生设想更复杂的太阳射电探测器,但灵敏度仍然不足。随后,德国天文学家Johannes Wilsing 和 Julius Scheiner建造的一个设备也没有观测到太阳的射电信号,但他们是第一个将太阳射电观测目标写下来并发表的天文学家。

  1900年,法国研究生Charles Norman建造了一个线天线,安装在阿尔卑斯山的冰川上,他已经非常接近于探测到太阳低频射电爆发信号。然而,不幸的是,当时正处于太阳活动的谷年。此后,太阳射电观测沉寂了很多年,直到20世纪20年代,英国物理学家OliverHeaviside证实了电离层的存在,射电天文学家才意识到只有高频射电接收机(>20MHz)才能接收到穿透地球电离层的太阳射电信号。

  1942年,英国防空雷达受到了强烈射电干扰,后经分析发现与太阳耀斑爆发相关。同年,美国贝尔实验室首次探测到宁静太阳的1厘米和10厘米的射电辐射(1945年发表)。美国天文学家Grote Reber利用自制的射电望远镜在持续的观测中探测到160MHz的强太阳射电信号,并于1944年在ApJ上发表了相关研究论文(图1),成为第一个发表太阳射电观测结果的天文学家。二战结束后,太阳射电天文学迎来了空前蓬勃的发展。

太阳射电天文学的观测技术

图1. Reber 的射电望远镜以及论文中太阳经过银河系中心的射电信号(图源:Reber G., ApJ,1944)

  早期的太阳射电望远镜一般是在单个或几个频点上探测太阳射电辐射在不同极化方向上的总流量,这种设备又叫流量计或偏振计,例如美国空军天文台的射电太阳望远镜监测网、怀柔基地的2840流量计、日本NoRP偏振计(7个频点)等。这些设备采用超外差结构的接收机,利用平方律检波器和积分器实现对太阳射电信号功率的检测。太阳物理学家们发现,太阳在10.7厘米波段的射电辐射强度与太阳活动的相关性最好,因此从上世纪六十年代起国际上建立了许多10.7cm太阳射电流量计,作为太阳活动监测和预报的工具。我国在70年代建设的第一台太阳射电望远镜也正是这样一台流量计(图2)。

 太阳射电天文学的观测技术

图2. 怀柔2840流量计(左)和从上世纪70年代开始的观测记录(右)(图源:历史资料)

  然而,对于太阳物理研究来说,射电宽带动态频谱观测是至关重要的,也是太阳射电观测必然的发展方向。在频谱分辨率低时,可采用多组接收机并行工作;而在频谱分辨率要求较高时,需要采用快速改变本振频率的方式来实现宽带频率连续扫描。随着宽带模拟和数字接收技术的发展,超宽带、高频谱分辨和高时间分辨的动态频谱观测已经可以实现。20世纪90年代以来,国内外建立了大量高分辨率动态频谱仪,频谱分辨率达到0.2MHz,时间分辨率达到2ms,利用这些设备获得了大量科学发现(图3)。

太阳射电天文学的观测技术

图3. 怀柔太阳射电宽带动态频谱仪和部分该设备首次观测并由我国科学家命名的射电爆发(右上:“鱼群”爆发,右下:“手型”爆发)(图源:Huang& Tan, ApJ, 2012)

  为了进一步研究太阳表面剧烈的爆发活动,射电爆发的空间分布信息至关重要,这就需要对太阳进行射电成像。利用望远镜对观测目标进行射电成像的技术主要有扫描式、多波束方式以及综合孔径方式等多种(图4)。

太阳射电天文学的观测技术

图4. 射电成像的技术手段,扫描方式(左),多波束方式(中),综合孔径方式(右)(图源:郑兴武,射电望远镜天线)

  利用单个射电望远镜单馈源即可以实现扫描方式的射电成像,这种方式实现简单,但时间分辨率很低,空间分辨率受限于单个望远镜的口径。即是像FAST这样大口径的望远镜,在最高工作频率3GHz处通过扫描方式对太阳成像的空间分辨率约1.5角分,整个太阳也仅有约400个像素。

  更为重要的是大口径望远镜观测太阳时还需要解决散热问题,要不然望远镜就会变成一个“太阳灶”。在毫米-亚毫米波段,由于波长很短,利用扫描方式仍然可以获得不错的太阳射电图像。图5为ALMA望远镜的太阳扫描成像,在约2分钟内可以获取一幅全日面图像。对于宁静太阳的研究,这样的时间分辨率是可以接收的。

太阳射电天文学的观测技术 

图5. 智利阿卡塔玛毫米-亚毫米波望远镜 ALMA的扫描成像,右图为望远镜扫描路径(图源:https://www.almaobservatory.org/)

  多波束成像则利用单个抛物面望远镜焦点处的相控阵馈源(PAF)来实现单次多波束快速成像,实现相对简单。这种方式同样也受限于望远镜口径,空间分辨率不高,且波束数有限。随着数字技术发展,新一代低频射电望远镜多采用数字化方式实现信号的接收和处理,如欧洲低频阵LOFAR、美国的长波阵LWA、澳大利亚的墨其森宽视场阵MWA和平方公里阵SKA等。这种望远镜的优点是可以利用数字波束合成技术实现望远镜的灵活指向,在资源充足的情况下可以一次形成上百个波束来实现快速成像。图6为LOFAR的太阳射电爆发成像。

太阳射电天文学的观测技术

图6. LOFAR的低频多波束太阳射电成像,LOFAR阵列形成的127个波束(中),太阳的低频射电爆发成像(右)(图源:Kontar, E. P. et al., Nature communications,2017)

  综合孔径技术是一种同时具有高空间和高时间分辨率的射电成像技术。专门用于太阳观测的综合孔径射电望远镜也称为射电日像仪。与一般射电源不同,太阳是展源,变源,且信号的动态范围很大,要求射电日像仪具有很好的瞬时成像能力,且图像的动态范围要高,这就对太阳射电日像仪提出了不同的挑战,例如阵型设计、接收链路动态范围设计等。

  初期的射电日像仪仅能在单个或少数几个频点实现对太阳快速成像,如日本野边山射电日像仪(NoRH),法国南茜射电日像仪(NRH)以及俄罗斯西伯利亚的射电日像仪(SSRT)。为了实现高频谱分辨率的太阳射电成像,我国研制了明安图射电频谱日像仪(MUSER),于2016年建成并投入使用,可以在~200ms内实现0.4-15GHz频段内584个频率通道的快速射电成像(图7)。

  升级后的俄罗斯SSRT和美国E-OVSA也实现了太阳射电频谱成像。此外,国际上许多非太阳专用的大型射电望远镜也可以对太阳进行全日面或是局部的射电成像,如美国甚大阵(VLA),印度巨型米波阵GMRT、澳大利亚的MWA等。

太阳射电天文学的观测技术 

图7. 明安图射电频谱日像仪MUSER及其在4.1875GHz的太阳成像结果(图源:Y. Yan,et al., Frontiers in Astronomy and Space Sciences, 2021)

  受到地球大气层透明度的限制,在大部分毫米-亚毫米波以及甚低频(<30MHz)频段,地基射电望远镜很难开展太阳射电观测。为此,我国科研人员提出了在空间建设太阳毫米波谱像结合宽带动态探测器以及日地L5点的太阳甚低频射电阵列等设想。此外,探测行星际闪烁(IPS)信号也可以实现对太阳风的观测。国家子午工程二期正在建设的中国行星际闪烁望远镜(图8)正是要实现对整个日地空间太阳风结构和扰动的监测。

太阳射电天文学的观测技术  

图8. 中国IPS望远镜主站望远镜设计图,由三个140m×40m的抛物柱面构成(图源:中电54所提供)

  未来,随着一系列新一代空间及地面射电望远镜的建设,太阳射电天文学必将迎来全新的发展。

  作者简介:陈林杰,中国科学院国家天文台高级工程师,主要从事太阳射电望远镜及阵列的信号处理与成像、甚低频射电天文以及超高能宇宙线和中微子的射电探测研究。

  文稿编辑:赵宇豪

[ 责编:涂子怡 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 习近平同巴西总统卢拉共同签署联合声明

  • 习近平同巴西总统卢拉共见记者

独家策划

推荐阅读
记者20日从中国航天科技集团一院获悉,该院抓总研制的长征十号系列火箭近日成功完成整流罩分离试验,标志着该系列火箭初样研制又迈出了坚实一步。
2024-11-21 09:14
作为战略性新兴产业,低空经济产业链条长,涵盖航空器研发与制造、低空飞行基础设施建设与运营、飞行服务与保障等产业,对构建现代产业体系具有重要作用。
2024-11-21 09:12
工业革命改变了世界面貌,为人类生产生活带来深远影响。当今世界,人工智能迅猛发展,推动人类社会深度变革。在此过程中,电力行业也在逐步向数字化和智能化转型。
2024-11-21 09:10
数据显示,2023年我国低空经济规模超5000亿元,增速超过33%,2030年有望达到2万亿元。2024年以来,全国已有超过26个省(区、市)将低空经济写进政府工作报告。
2024-11-21 09:09
日前,国际学术期刊《自然·通讯》在线刊发江西省农业科学院原院长颜龙安院士团队联合河北大学杜会龙教授团队的研究成果:首个稻属最全超级泛基因组图谱绘制成功。
2024-11-21 09:09
全海深光电缆绞车系统“海威GD11000”,日前随广州海洋地质调查局“海洋地质二号”船在我国南海完成了首个航次的深海调查任务。
2024-11-20 09:21
近日,中国科学院兰州化学物理研究所研究员何林团队与武汉大学教授雷爱文团队合作,在催化羰基化领域取得重要进展——成功利用一氧化碳或二氧化碳替代剧毒光气,高效合成含氮羰基化合物非对称脲。。
2024-11-20 09:24
这种菌能够迅速分解番茄、辣椒、娃娃菜等多种蔬菜尾菜,并具有促进作物生长、拮抗土传病原菌等功能特性。在此基础上,课题组进一步研发了“蔬菜尾菜+快速腐解菌+有机肥+功能菌”四位一体的原位还田技术。
2024-11-20 09:20
11月18日,在沪渝蓉高铁全线控制性咽喉工程崇太长江隧道内,我国盾构隧道智能建造V2.0技术体系正式在“领航号”盾构机成功应用
2024-11-20 09:19
19日,四川、重庆、贵州三省市同步首发动力型锂电池试运专列,这是我国铁路首次大规模试运输动力锂电池,将助力国产动力锂电池产品的全球流通。
2024-11-20 09:13
近年来,北京市延庆区大力发展低空经济,2023年相关产业产值达23.3亿元。天气渐冷,北京八达岭长城脚下,中关村延庆园内的低空经济产业园依旧热火朝天,一派繁忙景象。
2024-11-19 09:50
据最新一期《自然·化学》杂志报道,美国加州大学圣迭戈分校团队在最新研究中给出了一个涉及两种简单分子间反应的精妙解释。
2024-11-19 09:47
利用样地观测数据、空间分析和树线模型模拟,中国科学院青藏高原研究所研究员梁尔源等人系统分析了尼泊尔珠峰国家公园和安纳普纳保护区混交林树线,揭示了糙皮桦和喜马拉雅冷杉的种群更新动态和树线位置变化。
2024-11-19 09:46
机器人服务员、咖啡师、宠物……各种机器人让人目不暇接。自动载人飞行器,无人机、无人车、无人船……智能驾驶技术遍布“海陆空”。11月14日至16日,第二十六届中国国际高新技术成果交易会在广东深圳举行。
2024-11-19 04:55
近日,记者从湖北省神农架林区林业管理局野保科开展的陆生野生脊椎类动物普查中获悉,神农架现有陆生野生脊椎类动物710种,比原来的493种增加217种。
2024-11-19 05:00
北京时间11月15日23时13分,天舟八号货运飞船在文昌航天发射场由长征七号遥九运载火箭成功发射。自中国空间站建造以来,空间应用系统已在轨开展了百余项科学实验和应用试验,阶段性研究成果持续产出。
2024-11-18 10:27
中国科学院生物物理研究所王晓群研究员课题组、广东省智能科学与技术研究院张旭院士课题组和北京师范大学吴倩教授课题组合作,深入解析了人类背根神经节(DRG)发育过程中调控多种感觉神经元分化的多层级信号通路,并成功构建了人类DRG类器官(hDRGOs)模型。通过比较人类和小鼠的感觉神经元发育,研究人员发现两者在发育进程、基因表达谱和细胞亚型上存在差异。
2024-11-18 10:24
党的二十届三中全会提出,发展通用航空和低空经济。航空航天民航高校应发挥特色优势,形成“航空+”的多元化低空经济专业型人才培养模式,促进低空经济科技链、人才链、产业链的有机衔接。
2024-11-18 10:21
中北大学极端环境特种传感与测试创新研究团队成员正在围绕近期发射任务进行产品研发。日前,第28届“中国青年五四奖章”评选揭晓,中北大学极端环境特种传感与测试创新研究团队获“中国青年五四奖章集体”荣誉称号。
2024-11-18 10:16
据中国载人航天工程办公室消息,天舟七号货运飞船已于11月17日21时25分受控再入大气层。 天舟七号货运飞船于2024年1月17日在文昌航天发射场发射入轨,装载了航天员在轨驻留消耗品、推进剂、应用实(试)验装置等物资。
2024-11-18 10:14
加载更多