点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:太阳射电天文学的观测技术
首页> 科普频道> 天文前沿 > 正文

太阳射电天文学的观测技术

来源:光明网2021-08-09 10:59

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  太阳射电观测有记录的历史最早可以追溯到1890年,托马斯·爱迪生提出利用电缆缠绕铁矿石的方法探测太阳射电信号,然而这一试验并没有付诸实施。英国物理学家Sir Oliver J. Lodge在1897-1900年间建造了一个比爱迪生设想更复杂的太阳射电探测器,但灵敏度仍然不足。随后,德国天文学家Johannes Wilsing 和 Julius Scheiner建造的一个设备也没有观测到太阳的射电信号,但他们是第一个将太阳射电观测目标写下来并发表的天文学家。

  1900年,法国研究生Charles Norman建造了一个线天线,安装在阿尔卑斯山的冰川上,他已经非常接近于探测到太阳低频射电爆发信号。然而,不幸的是,当时正处于太阳活动的谷年。此后,太阳射电观测沉寂了很多年,直到20世纪20年代,英国物理学家OliverHeaviside证实了电离层的存在,射电天文学家才意识到只有高频射电接收机(>20MHz)才能接收到穿透地球电离层的太阳射电信号。

  1942年,英国防空雷达受到了强烈射电干扰,后经分析发现与太阳耀斑爆发相关。同年,美国贝尔实验室首次探测到宁静太阳的1厘米和10厘米的射电辐射(1945年发表)。美国天文学家Grote Reber利用自制的射电望远镜在持续的观测中探测到160MHz的强太阳射电信号,并于1944年在ApJ上发表了相关研究论文(图1),成为第一个发表太阳射电观测结果的天文学家。二战结束后,太阳射电天文学迎来了空前蓬勃的发展。

太阳射电天文学的观测技术

图1. Reber 的射电望远镜以及论文中太阳经过银河系中心的射电信号(图源:Reber G., ApJ,1944)

  早期的太阳射电望远镜一般是在单个或几个频点上探测太阳射电辐射在不同极化方向上的总流量,这种设备又叫流量计或偏振计,例如美国空军天文台的射电太阳望远镜监测网、怀柔基地的2840流量计、日本NoRP偏振计(7个频点)等。这些设备采用超外差结构的接收机,利用平方律检波器和积分器实现对太阳射电信号功率的检测。太阳物理学家们发现,太阳在10.7厘米波段的射电辐射强度与太阳活动的相关性最好,因此从上世纪六十年代起国际上建立了许多10.7cm太阳射电流量计,作为太阳活动监测和预报的工具。我国在70年代建设的第一台太阳射电望远镜也正是这样一台流量计(图2)。

 太阳射电天文学的观测技术

图2. 怀柔2840流量计(左)和从上世纪70年代开始的观测记录(右)(图源:历史资料)

  然而,对于太阳物理研究来说,射电宽带动态频谱观测是至关重要的,也是太阳射电观测必然的发展方向。在频谱分辨率低时,可采用多组接收机并行工作;而在频谱分辨率要求较高时,需要采用快速改变本振频率的方式来实现宽带频率连续扫描。随着宽带模拟和数字接收技术的发展,超宽带、高频谱分辨和高时间分辨的动态频谱观测已经可以实现。20世纪90年代以来,国内外建立了大量高分辨率动态频谱仪,频谱分辨率达到0.2MHz,时间分辨率达到2ms,利用这些设备获得了大量科学发现(图3)。

太阳射电天文学的观测技术

图3. 怀柔太阳射电宽带动态频谱仪和部分该设备首次观测并由我国科学家命名的射电爆发(右上:“鱼群”爆发,右下:“手型”爆发)(图源:Huang& Tan, ApJ, 2012)

  为了进一步研究太阳表面剧烈的爆发活动,射电爆发的空间分布信息至关重要,这就需要对太阳进行射电成像。利用望远镜对观测目标进行射电成像的技术主要有扫描式、多波束方式以及综合孔径方式等多种(图4)。

太阳射电天文学的观测技术

图4. 射电成像的技术手段,扫描方式(左),多波束方式(中),综合孔径方式(右)(图源:郑兴武,射电望远镜天线)

  利用单个射电望远镜单馈源即可以实现扫描方式的射电成像,这种方式实现简单,但时间分辨率很低,空间分辨率受限于单个望远镜的口径。即是像FAST这样大口径的望远镜,在最高工作频率3GHz处通过扫描方式对太阳成像的空间分辨率约1.5角分,整个太阳也仅有约400个像素。

  更为重要的是大口径望远镜观测太阳时还需要解决散热问题,要不然望远镜就会变成一个“太阳灶”。在毫米-亚毫米波段,由于波长很短,利用扫描方式仍然可以获得不错的太阳射电图像。图5为ALMA望远镜的太阳扫描成像,在约2分钟内可以获取一幅全日面图像。对于宁静太阳的研究,这样的时间分辨率是可以接收的。

太阳射电天文学的观测技术 

图5. 智利阿卡塔玛毫米-亚毫米波望远镜 ALMA的扫描成像,右图为望远镜扫描路径(图源:https://www.almaobservatory.org/)

  多波束成像则利用单个抛物面望远镜焦点处的相控阵馈源(PAF)来实现单次多波束快速成像,实现相对简单。这种方式同样也受限于望远镜口径,空间分辨率不高,且波束数有限。随着数字技术发展,新一代低频射电望远镜多采用数字化方式实现信号的接收和处理,如欧洲低频阵LOFAR、美国的长波阵LWA、澳大利亚的墨其森宽视场阵MWA和平方公里阵SKA等。这种望远镜的优点是可以利用数字波束合成技术实现望远镜的灵活指向,在资源充足的情况下可以一次形成上百个波束来实现快速成像。图6为LOFAR的太阳射电爆发成像。

太阳射电天文学的观测技术

图6. LOFAR的低频多波束太阳射电成像,LOFAR阵列形成的127个波束(中),太阳的低频射电爆发成像(右)(图源:Kontar, E. P. et al., Nature communications,2017)

  综合孔径技术是一种同时具有高空间和高时间分辨率的射电成像技术。专门用于太阳观测的综合孔径射电望远镜也称为射电日像仪。与一般射电源不同,太阳是展源,变源,且信号的动态范围很大,要求射电日像仪具有很好的瞬时成像能力,且图像的动态范围要高,这就对太阳射电日像仪提出了不同的挑战,例如阵型设计、接收链路动态范围设计等。

  初期的射电日像仪仅能在单个或少数几个频点实现对太阳快速成像,如日本野边山射电日像仪(NoRH),法国南茜射电日像仪(NRH)以及俄罗斯西伯利亚的射电日像仪(SSRT)。为了实现高频谱分辨率的太阳射电成像,我国研制了明安图射电频谱日像仪(MUSER),于2016年建成并投入使用,可以在~200ms内实现0.4-15GHz频段内584个频率通道的快速射电成像(图7)。

  升级后的俄罗斯SSRT和美国E-OVSA也实现了太阳射电频谱成像。此外,国际上许多非太阳专用的大型射电望远镜也可以对太阳进行全日面或是局部的射电成像,如美国甚大阵(VLA),印度巨型米波阵GMRT、澳大利亚的MWA等。

太阳射电天文学的观测技术 

图7. 明安图射电频谱日像仪MUSER及其在4.1875GHz的太阳成像结果(图源:Y. Yan,et al., Frontiers in Astronomy and Space Sciences, 2021)

  受到地球大气层透明度的限制,在大部分毫米-亚毫米波以及甚低频(<30MHz)频段,地基射电望远镜很难开展太阳射电观测。为此,我国科研人员提出了在空间建设太阳毫米波谱像结合宽带动态探测器以及日地L5点的太阳甚低频射电阵列等设想。此外,探测行星际闪烁(IPS)信号也可以实现对太阳风的观测。国家子午工程二期正在建设的中国行星际闪烁望远镜(图8)正是要实现对整个日地空间太阳风结构和扰动的监测。

太阳射电天文学的观测技术  

图8. 中国IPS望远镜主站望远镜设计图,由三个140m×40m的抛物柱面构成(图源:中电54所提供)

  未来,随着一系列新一代空间及地面射电望远镜的建设,太阳射电天文学必将迎来全新的发展。

  作者简介:陈林杰,中国科学院国家天文台高级工程师,主要从事太阳射电望远镜及阵列的信号处理与成像、甚低频射电天文以及超高能宇宙线和中微子的射电探测研究。

  文稿编辑:赵宇豪

[ 责编:涂子怡 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 假期旅游热 祖国山河美

  • 建设巅峰气象观测网络 揭示极高海拔区气候变化特征

独家策划

推荐阅读
科技立则民族立,科技强则国家强。近年来,科技创新能力日益成为综合国力竞争的重要因素,世界各主要经济体将科技创新视为未来发展的决定性因素,纷纷加快布局、加大投入,以抢占未来技术制高点。
2023-10-02 09:06
10月1日中午,杭州亚运会赛程过半。中国队金牌达到114枚,以218枚奖牌的总数,牢牢占据亚运会奖牌榜第一名的位置。
2023-10-01 15:19
由自然资源部组织的中国第13次北冰洋科学考察队27日乘“雪龙2”号极地科考破冰船返回上海,标志着中国第13次北冰洋科学考察任务圆满完成。
2023-09-28 10:10
气候变化是当代人类面临的最为紧迫和复杂的全球性危机和挑战之一。尤其是自工业革命以来,在人类活动的主要影响下,世界正经历着以全球变暖为显著特征的气候变化
2023-09-28 10:55
从探索星辰大海,到聚焦国家需要,如今,越来越多的青年学生成长为科技创新的有生力量。怀揣科技报国理想,太原理工大学学生王煜尘成为中国极地科考史上在站时间最长的大学生。
2023-09-28 10:50
在淳安界首体育中心场地自行车女子团体竞速赛现场,中国队选手鲍珊菊、苑丽颖和郭裕芳意气风发,头戴“哪吒”头盔,脚踩“风火轮”,在“碗”状的环形赛道上飞速旋转,以打破亚运会纪录的成绩夺得冠军。
2023-09-28 10:49
27日,在哈伊高铁铁力至伊春段伊春西站施工现场,重达556吨的站房屋面球形网架结构顺利顶升到位,标志着由中铁建设集团承建的我国最北高铁站——伊春西站正式封顶。至此,哈伊高铁铁力至伊春段全线站房施工将全面转入站房屋面和装饰装修阶段。
2023-09-28 10:48
46秒376!9月26日,杭州亚运会淳安赛区迎来了新的纪录!
2023-09-28 10:15
农业农村部26日召开全国粮油等主要作物大面积单产提升现场观摩暨秋冬种工作部署会。
2023-09-28 10:12
圆环阵太阳射电成像望远镜通过工艺测试,正式建成。
2023-09-28 10:07
建设绿色智慧的数字生态文明,是实现经济转型升级和高质量发展的内在要求。
2023-09-28 10:03
随后,越来越多的探测结果为月球“南极”撞击坑底部永久阴影区内存在“水冰”提供了有力证据。
2023-09-27 10:11
在位于浙江杭州萧山区的杭州亚运会赛事总指挥部,一块综合智慧大屏正实时更新反映场馆状况的各类数据。
2023-09-27 10:08
作为一种旨在收集、保存、解释和利用个人和社区在过去事件中的经历、记忆、观点与情感的研究方法与学科领域,通过积极倾听地球居民的声音,口述史成为理解和探讨个人和社区如何经历、解释、传播与应对气候变化的有力工具。
2023-09-28 10:27
英国布里斯托大学研究团队用一个模拟温湿度模式的气候模型预测,整个未来超大陆将会超过哺乳动物热应激极限。
2023-09-27 10:06
城市的生物多样性包括生态系统多样性、物种多样性和遗传多样性三个由大到小的层面。
2023-09-27 10:02
日前,中国科学技术大学郭光灿院士团队在量子密钥分发研究中取得重要进展。
2023-09-27 09:46
日前,山东农业大学生命科学学院院长李传友教授团队在国际植物学领域顶尖期刊《自然-植物》在线发表论文。该团队成功克隆出番茄的FS8.1基因,阐明了FS8.1基因调控果形建成的细胞学基础和转录调控网络,
2023-09-26 05:10
地球正朝着平均温度上升的方向急速前进。一个气候模型显示,2023年,地球温度有55%的可能性比工业化前水平高出1.5℃。
2023-09-26 09:52
“不断尝试、不断试错,才可能有不经意间的发现。”这是陈辉的科研态度。看似“笨拙”的执着,却帮助他走得更远。
2023-09-26 09:51
加载更多