正在阅读: 引力波天文学:“听”见不一样的宇宙
首页> 科普频道> 天文前沿 > 正文

引力波天文学:“听”见不一样的宇宙

来源:光明网2019-06-14 10:38

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  天文学大概是人类最古老的学科了。尽管历史悠久,但是在很长的一段岁月里,天文学家都只能靠“看”来了解宇宙,看的是遥远天体发出的光。光是电磁波,其中只有很少一部分能被人看到,这一部分叫做可见光。其余的光,如无线电、微波、红外线、紫外线、X射线、伽马射线等,都超出了人眼可见的范围,要用特殊的仪器才能探测到。借助这些仪器,今天的天文学家们已经可以在全电磁波对宇宙进行观察,“看”到我们的祖先看不到的宇宙。(如图1)

引力波天文学:“听”见不一样的宇宙

图1:银河系在不同电磁波段照的照片。可见光波段的照片在第八行。(Credit: NASA)

  宇宙中有没有我们“看”不到的地方呢?公元2015年9月14日将永载史册,因为这一天,美国的激光干涉引力波天文台(英文简称LIGO)搜寻到了一个来自宇宙深处的信号。这个引力波信号不是“看”到的,是“听”到的。

  引力波是广义相对论的预言。通俗的来讲,引力波就好像时空中的涟漪:时空受扰动后,这种扰动会像波一样向外传播,传播的速度是光速。引力波带来的效果之一就是使两点间的距离有规律的振荡。正是通过精确测量地球上两点间距离的变化,LIGO才探测到了引力波。这是一项艰巨的任务,因为这些引力波造成的扰动幅度大概在10-21这个量级。也就是说,即使有一把1000公里的尺子,引力波通过的时候,尺子长度的变化也仅有一个质子那么小,更何况LIGO的两个探测器都只有4公里长。

  探测引力波为什么要靠“听”呢?我们的耳朵之所以能听到声音,就是因为鼓膜对空气的振动作出响应。空气振幅越大,声音听起来越响。而我们的眼睛之所以能看见物体,是因为视网膜对光子作出响应。单位时间内撞击视网膜的光子越多,物体看起来越明亮。因为引力波天文台探测的是引力波的振幅,而不是引力波的流量,所以工作原理更像用耳朵听声音。

  什么样的天体能被引力波探测器“听”到呢?正如人耳听不到特别微弱的声音一样,引力波探测器的听力也是有极限的。只有足够“响亮”的引力波源,才能被“听”见。从原理上来说,这些天体基本都要满足以下四个条件。

  1、质量大。这就是为什么虽然车祸也产生引力波(振幅大概在10-41左右),但是研究引力波的专家一般不关心它们,除非有卡车直接撞在了引力波天文台的外墙上(这样的乌龙事件真的发生过)。

  2、尺度小。太阳的质量是2x1027吨,水星是3x1020吨。即便这两个质量看上去已经很大了,但我们还是很难测量到太阳-水星这个系统辐射的引力波,原因就是水星到太阳的距离有六千万公里,这个系统的尺度太大了。

  3、形状不对称。和太阳比起来,中子星更重,尺寸也小多了。但是单个中子星还是难以产生强的引力波,原因就是中子星太圆。这也是为什么今天我们还没有探测到中子星自转产生的引力波。

  4、距离不太遥远。关于这一点,大家下次接电话的时候把听筒拿的离耳朵远一点就有体会了。

  宇宙中能够同时满足上面四个条件的天体并不多。在科学家“提名”的候选天体中,两个黑洞合并是排名比较靠前的。果然,第一起引力波事件就是双黑洞合并事件。不过,让大多数天文学家大跌眼镜的是,我们第一次“听”到的黑洞竟然和以前“看”到的完全不一样。

  在“看”宇宙时代,我们发现了一类比太阳重10倍左右的黑洞,它们都寄居在一种叫做“X射线双星”的天体中。天文学家推测,这类黑洞应该是大质量恒星死亡后留下来的遗骸。在教科书中,这类黑洞被称为“恒星级黑洞”。在学术会议上,天文学家经常一本正经的说:“众所周知,大质量恒星死亡后会形成黑洞,其典型质量是10倍太阳质量。”

  LIGO“听”到的第一起双黑洞合并事件就颠覆了天文学家对恒星级黑洞的定义。在这次事件中,一个黑洞比太阳重36倍,另一个比太阳重29倍!这样重的黑洞,在X射线双星中前所未见。一时间,整个天文届为之震动。上面那句“众所周知”,从此也在学术圈销声匿迹了。

  天文学家为什么相信LIGO探测到了超重的黑洞呢?换句话说,从引力波怎么就能够得知黑洞的质量呢?答案就在引力波的频率上。引力波的频率直接反映了两个黑洞相互绕转的快慢。粗略来说,黑洞越重,合并前两个黑洞绕转地就越慢,因此引力波的频率也越低。反之,黑洞越小,产生的引力波频率越高。通过频率的高低,我们可以判断黑洞的大小,正如通过音调的高低,我们可以辨别小提琴和大提琴的声音一样。

  截止到2018年底,LIGO和欧洲的Virgo探测器通过联合观测,又搜寻到了9起比较确信的双黑洞合并事件,外加一起双中子星合并事件。在这9起双黑洞合并事件中,7起都含有超重黑洞,有些黑洞在合并后甚至重达80倍太阳质量。(图2)

引力波天文学:“听”见不一样的宇宙

图2: LIGO/Virgo探测到的双黑洞(蓝色)和双中子星(橙色)。紫色圆点代表X射线双星中的黑洞,黄色圆点代表已知的中子星。(Credit: LIGO/VIrgo/Northwestern Univ./Frank Elavsky)

  为什么这类超重黑洞从没在X射线双星中被“看见”过呢?超重的黑洞究竟是怎么形成的?它们真的是大质量恒星死亡后的产物吗?我们“听”到的确实是超重双黑洞的“原声”吗?有没有可能是“失真”了的声音呢?还有其他方法能够证明超重黑洞的存在吗?关于这些问题,天文学家还没有明确的答案。

  但有一点是大家的共识,那就是,人类观察宇宙的“默片”时代已经终结了。我们步入了“有声电影”时代,下一步自然是要提升视听感受。在“听觉”方面,通过降低引力波探测器的噪声(如LIGO/Virgo的升级计划,以及未来的Einstein Telescope),我们可以“听”得更远。通过建造新的地面引力波探测器(日本的KAGRA,印度计划中的IndIGO等),我们可以“听”见“立体声”,从而辨别引力波天体的方向。通过在太空搭建引力波探测器(如欧美的LISA,日本的DECIGO,中国的“太极”和“天琴”计划等),我们可以“听”到更加低沉的“bass”,从而找到宇宙中更遥远、更重的黑洞。这些工作,都在陆续地展开。

  中国人有句话,叫做“兼听则明”。这里调整一下标点,兼“听”则明,拿来比喻今天的引力波天文学,恰好合适。

  作者:陈弦,系北京大学物理学院天文系助理教授,长期从事和黑洞附近的动力学有关的理论研究,对辐射引力波的天体尤其感兴趣。

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • “十五五”期间我国首台核电机组开工建设

  • “中国天眼”找到快速射电暴起源关键证据

独家策划

推荐阅读
从中国地质调查局获悉,由该局广州海洋地质调查局自主研发的国内首台海底地层空间立体钻探与原位监测机器人,日前在南海1264米水深海域成功完成试验作业,各项性能全面达标,标志着我国深海勘探与地层原位监测技术取得重要突破。
2026-01-16 03:45
15日,国际学术期刊《自然》发表中国科研团队重大成果——由中国科学院大学主导、广西大学等多单位联合攻关的团队,首次直接观测到中子碰撞中的米格达尔效应,为人类搜寻轻暗物质粒子打开关键突破口,标志着我国在基础物理与探测器技术领域跻身国际前沿。
2026-01-16 03:45
15日12时01分,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功将阿尔及利亚遥感三号卫星A星发射升空,卫星顺利进入预定轨道,发射任务取得圆满成功。
2026-01-16 03:45
进一步促进青年科技人才脱颖而出,需要凝聚多方合力、强化协同联动,从制度供给、环境营造、资源倾斜等方面精准施策、一体推进。
2026-01-16 03:45
展望未来,随着相关实践的不断普及和深化,数智赋能的流动公共服务将更加可及、公平普惠、精准高效,并为推进国家治理体系和治理能力现代化注入更多动能。
2026-01-16 03:45
中国医学科学院血液病医院(中国医学科学院血液学研究所)主任医师施均、研究员熊海清为通讯作者,博士后李若难、主治医师潘虹、主治医师张乐乐和研究生马佳秀为共同第一作者。
2026-01-16 09:04
他们提出一种全新多物理域融合计算系统,可利用后摩尔新器件支持傅里叶变换,使算力提升近4倍,为具身智能、通信系统等领域开辟新的可能。
2026-01-15 04:05
2025年11月,中国载人航天工程启动第一次应急发射任务,并取得圆满成功。此次任务,源于神舟二十号飞船疑似遭到空间微小碎片的撞击,返回任务被迫按下紧急“暂停键”。
2026-01-15 04:55
现代人工智能是先进计算的产物,也是赋能千行百业的技术。从早期符号主义在有限算力下的踯躅前行,到神经网络思想历经沉浮,直至大数据与图形处理器(GPU)的邂逅,
2026-01-15 04:55
项目骨干成员、中国科学院大学教授郑阳恒表示,团队还将与暗物质探测实验团队合作,将此次实验结果融入下一代探测器的研发中。
2026-01-15 09:03
对于娱乐及部分消费产业而言,当前的人形机器人还不适合作为长期自有资产,更适合通过“租赁+技术服务”的方式使用。
2026-01-15 09:02
最终,他们模拟出一种外形稳定的氰化氢晶体,其外形为顶端多面、底部圆润的圆柱体,长度约450纳米,整体形状类似切割后的宝石。
2026-01-15 09:00
从中国地震局获悉,近日,在离岸80千米的三峡江苏大丰海上风电场,全国首个海底综合地震电磁监测台站建成,这标志着我国地球物理场监测台网向海域拓展取得新进展。
2026-01-15 04:05
你有没有感觉,这些年的春天来得越来越不规律了?相比过去,有的地方春来早,有的地方春迟到。这不是你的错觉,全球变暖正导演着一场波及整个北半球的“春日变奏曲”。
2026-01-14 02:55
布局未来产业,要统筹经济性与战略性,综合考虑绝对优势和比较优势,深耕细分赛道,探索各具特色的发展路径和模式。
2026-01-14 09:03
实现了育种加代方法的颠覆性创新,整体上达到国际领先水平。
2026-01-14 19:12
相关研究成果发表于《植物生物技术》,为光信号驱动的绿色农业技术创新提供了全新思路。
2026-01-14 19:12
“十四五”以来,生态环境部卫星遥感监测能力显著提升,目前已在轨运行7颗生态环境卫星,初步构建起多星联动的生态环境卫星遥感监测体系。
2026-01-14 09:03
作为钢铁生产核心工序,高炉占生产总成本的70%左右,其长期稳定运行直接关系企业盈利状况。经过攻关,宝钢股份高炉AI大模型对炉温等关键指标的预测准确率达90%,实现对内部状态的高精度、高时效性感知。
2026-01-14 09:02
1月13日23时25分,我国在海南商业航天发射场使用长征八号甲运载火箭,成功将卫星互联网低轨18组卫星发射升空,卫星顺利进入预定轨道,发射任务获得圆满成功。
2026-01-14 09:01
加载更多