点击右上角微信好友
朋友圈
请使用浏览器分享功能进行分享
在生物体内,DNA序列的微小变化时刻扮演着双刃剑的角色。它们或诱发不良性状及遗传疾病,亦或成为物种进化的关键。小麦的DNA中藏有155亿个碱基,人类DNA中也存在着约30亿个碱基,想要在如此浩瀚的遗传信息中高效且精确地定位到某一特定基因的变异,无疑是一项巨大挑战。随着基因编辑技术的发展,人类逐渐找到了精准改写基因组遗传信息的得力工具。
图片由AI生成
中国科学院遗传与发育生物研究所高彩霞研究员介绍,在基因编辑工具酶的发展历史中,归巢核酸内切酶(Meganuclease)、锌指蛋白核酸酶(ZFN)与转录激活样效应因子核酸酶(TALEN)是三个最为常见的工具。利用蛋白来识别DNA的特异序列是这些编辑工具最为明显的特征。这意味着对于任何一个新的DNA序列来说,必须要利用一个新的蛋白来进行识别。“尽管新工具为科学家们提供了寻找特定DNA的可能,但这些工具依赖于蛋白和DNA的直接靶向作用,因此对普通实验室来说,要实现重新靶向新位点是极具技术挑战的。”高彩霞表示。
图片由AI生成
2012年,基因编辑领域迎来了一次革新,CRISPR技术应运而生,为基因组的精准改造提供了前所未有的新途径。高彩霞介绍,与以往依赖蛋白识别靶DNA的工具不同,CRISPR技术采用了一种更为简洁高效的方式,利用一段定制设计的Guide RNA来直接导向并识别特定的DNA序列。“针对任何新的基因靶点,科研人员仅需设计相应的Guide RNA序列,即可实现对该位点的精确定位,极大降低了技术门槛,提高了灵活性和普适性,使得基因编辑技术更加贴近科研与应用的实际需求。”她说。
中国科学院遗传与发育生物学研究所高彩霞研究员
历经十多年的快速成长,基因编辑已从一个新兴的科学探索转变为了推动生物技术创新的重要力量。初期的CRISPR技术侧重于利用自然修复机制或诱导特定DNA双链断裂(DSB)来实现编辑,而这一领域也迎来了以碱基编辑和引导编辑为代表的第二代技术革新,它们能够在不造成DSB的前提下直接对DNA进行修饰,提升了安全性,编辑结果亦更加可控。
图片由AI生成
随着基因编辑技术的不断飞跃,我们正处于一个前所未有的生命科学革命时代。从归巢核酸内切酶到CRISPR,每一次技术的进步都是人类向自然法则更深层次探索的勇敢尝试。展望未来,基因编辑技术将持续深化我们对生命的认知,不仅在基础科学研究中开辟新天地,更将在医学治疗、农业育种、环境保护等多个领域催生革命性的变革。(光明网基因科普团队)