点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

首页> 科普频道> 天文前沿 > 正文

与黑洞一起摇摆

来源:光明网2020-11-02 14:27

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  舞曲的旋律响起时,大家会想到什么?灯光、音乐、舞池里尽情摇摆的人群?会有小伙伴由此联想到有东西随着黑洞一起摇摆吗?那我们先看看这段视频。

与黑洞一起摇摆

  视频里像丝带一样的东西是什么呢?它为什么会随着黑洞摇摆?带着这个问题我们来看看什么是黑洞,教科书上说它是爱因斯坦广义相对论的预言,公众认为它是宇宙中吞噬一切的怪物,而今年的诺奖评委认为它十分重要,值得诺奖的认可。

  我们今天故事的主角就是黑洞,但是不同于诺奖得主莱因哈德·根泽尔和安德里亚·盖兹发现的银河系中心的超大质量黑洞,它是质量轻五十万倍的小兄弟,一颗恒星级质量黑洞。大于20个太阳质量的恒星,在其生命终点时,核心会塌缩成为恒星级质量黑洞,银河系内可能存在上亿个这样的黑洞,但这些黑洞大多孤孤单单的存在着,没有恒星与之作伴。所以,它们只能吸积周围空间中的星际介质,而星际介质本身的密度又极低,因此这些黑洞的辐射就相当微弱,人们很难看到它们。

  而少数黑洞由于有恒星与之作伴,形成双星系统,黑洞的强引力可以俘获来自伴星的物质。来自伴星充足的物质供给,可以使黑洞周围形成吸积盘,并产生喷流(见图1)。随着吸积物质引力势能的释放,这些黑洞可以发出明亮的辐射,我们也就有可能观测到它们。

与黑洞一起摇摆

图1. 黑洞双星示意图。黑洞吸积来自伴星的物质,形成吸积盘,并产生喷流(图源:G Pérez Díaz (IAC))

  结束上面这一段类似教科书上的介绍后,我们开始揭晓谜底了。这个像丝带一样的东西就是科学家想象中的喷流。那喷流又是什么?喷流是一种运动速度接近光速的高速物质流。

  黑洞吞噬周围物质的过程中,也就是黑洞在吃东西的过程中,会对周围环境产生一些反馈,而喷流就是黑洞系统对周围环境产生显著反馈影响的一种主要手段。

  那喷流为什么会摇摆呢?答案是因为黑洞在旋转。旋转的黑洞会拖曳了周围的弯曲时空,所以喷流就会随着黑洞摇摆。

  现在,可能有小伙伴会问,这些都是科学家的想象,有证据吗?还真有!

  慧眼卫星团队在上个月发布消息,他们发现了能量最高(200 千电子伏特以上)的低频准周期振荡现象,而产生这个现象的源头就是喷流。可能小伙伴们又疑惑了,什么是低频准周期振荡现象?为什么产生它的源头是喷流?

  长话短说,低频准周期振荡现象就是“低频”+“准周期”+“振荡”+“现象”:“低频”的意思就是说还有高频,“准周期”就是说它不是精确的周期性的,“振荡”就是说会出现高低起伏的变化,“现象”意味着是我们能够观测到的。

  所以,低频准周期振荡(简称低频QPO)就是这样一类特殊的观测现象,它表现为一些黑洞双星的辐射强度会出现类似周期性的高低变化(见图2),而且这种变化却不是精确周期性的。这种变化的频率从几秒钟一次到1秒钟几十次。

  低频QPO发现于上世纪80年代,它在黑洞双星中普遍存在。关于它的物理起源,有些科学家认为,当伴星的物质被黑洞吸引,在旋转落向黑洞的过程中会形成吸积盘,而在这个过程中,吸积盘上可能会出现一些不稳定性,引起X射线辐射发生类似周期性的调制,产生低频QPO。

  而另外一些科学家认为,在靠近黑洞的地方,会有一团由热等离子体组成的结构,这个结构的内部可能会发生振荡,或者这个结构的指向可能会绕着黑洞的自转轴旋转(也就是发生进动),导致X射线辐射发生类似周期性的调制,产生低频QPO。

与黑洞一起摇摆

图2. 低频QPO表现为亮度类似周期性的高低变化(图源:慧眼团队)

  那低频QPO怎么会和喷流联系起来呢?这团由等离子体组成的结构可能就是尺度比较小的喷流,这个喷流绕着黑洞旋转,形象地可以理解为随着黑洞一起摇摆。

  在摇摆的过程中,当喷流朝向我们时,我们看到的喷流就会亮一些,而当喷流远离我们的时候,看到的亮度就会暗一些。而且,喷流是绕着黑洞自转轴一圈又一圈地摇摆的,所以这种亮度变化是类似周期性的。可见低频QPO现象就自然产生了。

与黑洞一起摇摆

视频2. 喷流摇摆产生低频QPO(来源:慧眼团队)

  这时,大家可能还有疑问,既然上面说到低频QPO可能来源于吸积盘,那为什么慧眼卫星看到的低频QPO就不会来自于吸积盘呢?因为它的能量实在是太高了,超过200千电子伏特!而吸积盘的温度最多也就几个千电子伏特。

  好了,今天关于喷流随着黑洞摇摆的故事就到这里了,最后还得感谢慧眼卫星,因为它对高能光子具有最强的收集能力,所以才让我们能够看到如此有趣的现象。

与黑洞一起摇摆

图3. 慧眼卫星看到来自于喷流的低频QPO(图源:慧眼团队)

  作者简介:陶炼,中科院高能所特聘青年研究员,慧眼卫星团队成员。马想,中科院高能所副研究员,慧眼卫星团队成员。

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 《为了民族解放与世界和平》主题展览面向公众开放

  • 第十七届中国国际现代化铁路技术装备展览会在京开幕

独家策划

推荐阅读
随着科技创新与产业创新深度融合,人工智能技术助力建材行业向更智能、更绿色、更高端方向变革。“通过数字化转型,建材企业可基本实现研发设计数字化、生产运营一体化、客户服务敏捷化,提升决策效率、协同能力和服务水平,快速提升生产力和核心竞争力。
2025-07-09 09:40
记者8日从湖南省自然资源厅获悉,通过创新地质找矿理论,经过长期勘探,湖南省郴州市临武县鸡脚山矿区已探获超大型蚀变花岗岩型锂矿床,共提交锂矿石量4.9亿吨,氧化锂资源量131万吨。
2025-07-09 09:39
根据国家卫生健康委8日晚间发布的通知,今后“颈深淋巴管/结—静脉吻合术”将不得应用于阿尔茨海默病治疗。“颈深淋巴管/结—静脉吻合术”是将颈部深层淋巴管或淋巴结与邻近的静脉进行吻合的手术,近年来部分医疗机构将其用于治疗阿尔茨海默病,引发争议。
2025-07-09 09:39
国家发展改革委、工业和信息化部、国家能源局日前发布《关于开展零碳园区建设的通知》。支持企业对标标杆水平和先进水平,实施节能降碳改造和用能设备更新,鼓励企业建设极致能效工厂、零碳工厂。
2025-07-09 09:37
近日,中国科学院近代物理研究所科研人员依托兰州重离子加速器冷却储存环,精确测量了极缺中子原子核硅-22的质量,实验发现硅-22的质子数14是一个新幻数。
2025-07-09 09:35
国家自然科学基金委员会7日发布消息,自然科学基金委近日制定重大非共识项目试点实施方案,将在2025年启动资助试点。
2025-07-08 09:20
近日,由农业农村部南京农业机械化研究所联合有关单位研制的全自动水稻覆膜插秧技术装备在江苏省靖江市投入使用,开启了我国水稻覆膜插秧新模式。
2025-07-08 09:11
日前,全球领先的720V高压固态钠盐电池,在位于内蒙古自治区鄂尔多斯市达拉特旗的建亨奥能科技有限公司正式量产,标志着中国成为全球第三个实现固态钠盐电池商用量产的国家。
2025-07-08 09:10
从国家自然科学基金委员会获悉,该委日前制定了重大非共识项目试点实施方案,将在2025年启动资助试点。
2025-07-08 05:05
什么是聚乳酸材料,在取代传统石化基塑料材料方面又有着怎样的优势?本期院士科普,让我们跟随中国科学院院士陈学思,一起走进生物降解高分子材料——聚乳酸的奇妙世界。
2025-07-07 14:19
科技的力量正让农民从传统体力劳动者向掌控全局的智慧决策者转变。
2025-07-07 12:33
在未来数十年,熟练使用人工智能很可能成为大多数职业的必备技能,并深刻影响就业市场。作为经济土壤中的“超级肥料”,新技术既带来传统岗位的替代,更促进新兴产业发展,直接创造新的岗位需求。
2025-07-07 09:12
抽水蓄能机组主要由发电电动机和水泵水轮机组成,利用山上山下两个水库进行水能和电能相互转换。
2025-07-07 09:11
回溯歼—10飞机研制历程,从立项、首飞到定型,历经数十载,“三滴油”看起来微不足道,却更加说明创新需要点滴用心、长期耕耘。
2025-07-07 09:10
从微小的夸克到浩瀚的宇宙,从生命的密码到自然的规律,科学这双“慧眼”不断重新定义着“可见”与“可知”的边界。从墓室中的真菌到实验室里的潜在新药,科学家用一套跨学科方法挖掘出这个隐藏在自然界的分子宝藏。
2025-07-07 09:08
在6日开幕的中国科协年会上,2025重大科学问题、工程技术难题和产业技术问题正式发布。这凝聚科技界智慧的30项问题、难题“锁定”了哪些前沿领域的核心赛道?其遴选标准蕴含着怎样的科学智慧?带着这些问题,记者专访了丛斌、邹冰松、王小云、陈坚四位院士。
2025-07-07 03:10
2025全球数字经济大会2日在北京开幕。除收录标准的优势外,东壁全球科技文献数据平台还根据中国科技界与教育界的习惯,对所收录期刊进行了学科分类。
2025-07-04 09:55
超材料是一类具有特殊性质的人造材料,而具有热辐射性能的超材料可以把多余的热量“打包”传递到外界,热辐射超材料可广泛应用于零能耗辐射冷却、建筑节能降温、航天热控等诸多重要领域。
2025-07-04 09:53
中国科学院院士、海南大学生物医学工程学院教授骆清铭团队成功绘制出了小鼠三维脑区和立体定位图谱
2025-07-04 09:52
加载更多