点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:“金环日食”奇观上演 来看看日食背后那些秘密②
首页> 科普频道> 天文前沿 > 正文

“金环日食”奇观上演 来看看日食背后那些秘密②

来源:光明网2019-12-30 18:27

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  上一篇我们带大家了解了日食的成因,以及我国对于日食的早期记载,神奇的日食,是大自然赠予我们的礼物,今天我们继续开启日食知识之旅~

  日食名词

  根据月面遮盖日面程度的不同,日食有不同的分类。整个过程中,月面中心与日面中心最为靠近的时候:

  月面能够完整地把整个日面遮住,就叫做日全食。

  月面边缘全部进入日面轮廓内,但还留有一圈日面的圆环,就叫做日环食。

  日全食与日环食统称为“中心食”。

  月面边缘没有全部进入到日面轮廓里,就叫做日偏食。日全食与日环食的过程中,一定会发生日偏食。但日偏食发生时未必会出现日环食、日全食。

  除此之外,还有一种极为罕见的日食,在其核心食带的两端,看到的是日环食。在核心食带的中间部分,看到的则是日全食。这种日食一般被称为“全环食”或“混合食”。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图1 日食的种类(距离与大小不依实际比例)。A 本影区出现日全食。日全食发生时,太阳视直径略小于月球视直径;B 伪本影区出现日环食。日环食发生时,太阳视直径略大于月球视直径;C 半影区出现日偏食 图片来源:维基百科

  类似的情况,当地球运行到月亮和太阳连线上时,地球的影子投到月亮上,就会发生月食。由于篇幅有限,本文就不再对月食做太多分析了。

  日食食分

  以日食为例,日偏食或中心食偏食阶段的食分,是指太阳被月球遮蔽的角直径与太阳的角直径与之比。中心食食甚阶段的食分,是指月球角直径与太阳角直径之比。

  日偏食或中心食的偏食阶段,食分大于0小于1。

  日环食食甚时的食分,接近1但小于1。

  日全食食甚时,食分大于等于1。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图2 日食的食分示意图 图片来源:www.timeanddate.com

  很多公众媒体在进行日食的报道时,会提及食分的数值,但不会提及定义。因此很多人会把日食食分当做日面被月球遮盖的面积率。实际上这是错误的。以刚刚过去的这次(2019年12月26日)的日环食为例,北京仅能看到日偏食,食分约为0.15,实际上食甚时的遮盖面积仅为大约6.8%。

  日环食与日全食

  在我们的日常语汇当中,日全食被提及的频率往往会比日环食要高。因此很多人会以为日环食是日全食的一种特殊情况,且日环食会比日全食更为罕见。实际上,这也是完全错误的观念。

  首先,从日食分类来说,日环食与日全食统称为“中心食”,但两者被认为是不同类型的日食。

  其次,根据对公元前1999年至公元3000年这五千年当中的日食发生次数的统计(见表1),日环食发生的几率,比日全食还要高一些!

“金环日食”奇观上演 来看看日食背后那些秘密②

  表1 公元前1999年至公元3000年日食统计表 数据来源:NASA’s Goddard Space Flight Center Eclipse Web Site, Fred Espenak

  日食与月相

  在笔者的科普工作经历当中,有太多的公众将日月食的成因与月相变化的原因混为一谈,认为月亮的阴晴圆缺是由于地球的遮挡所造成的。诚然,这两者都是在一个圆面上产生的形状变化,但只要将两者进行简单的对比,就可以发现很明显的不同之处。月相变化显然不是由于某个球形实体遮挡而形成的。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图3 日环食期间的日面变化过程 拍摄&制图:孙思

“金环日食”奇观上演 来看看日食背后那些秘密②

  图4 月相变化过程图 素材来源:Ernie Wright,Scientific Visualization Studio 制图:克留

  我们知道,平面上两个圆形的位置关系有相离、外切、相交、内切、内含五种情况。我们如果将太阳与月球这两个球体投影为圆形,就可以用圆与圆的位置关系来帮助理解日食过程中的重要时间节点。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图5 平面上的圆与圆的位置关系示意图 图片来源:《义务教育教科书:数学(九年级上册)》人民教育出版社2013年版,第103页

  以中心食的核心食带为例,当日面与月面两个圆形:

  1、第一次外切时,这个时刻叫做“初亏”。日面有一个边缘即将开始被遮挡。这是日食的开始。

  2、第一次相交的时间过程,叫做“日偏食”或“偏食阶段”

  3、第一次内切时,如果是日全食,这个时刻叫做“食既”。这时日面完全被月面遮挡住,天空仿佛突然黑了下来。如果是日环食,这个时刻叫做“环食始”。这时月面完全进入到日面范围内,太阳即将会变成出一轮明亮的光环。

  4、当月面中心与日面中心最接近的时刻,叫做“食甚”。如果是日全食,太阳这时会变得最黑。如果是日环食,这时的太阳就变成了一个非常完美的圆形光环。

  5、第二次内切时,如果是日全食,这个时刻叫做“生光”,日面边缘即将开始变亮。如果是日环食,这个时刻叫做“环食终”,能够看到月面即将开始移出日面的范围内。

  6、第二次相交的时间过程,叫做“日偏食”或“偏食阶段”

  7、第二次外切时,这个时刻叫做“复圆”。日面完全恢复圆形。日食结束。

  对于日全食来说,“食既”之前与“生光”之后,都有一瞬间,日面的边缘处有一个点会特别明亮,就像一颗璀璨的明珠,这个现象被称为“贝利珠”。

  对于最多只能看到日偏食的情形,则全程只有“初亏”“食甚”“复圆”三个节点。

“金环日食”奇观上演 来看看日食背后那些秘密②

  表2 日面与月面两个圆形位置关系示意

  日环食和日全食关键阶段图片为作者利用Stellarium 0.19.2软件演示截图,两张贝利珠图片由王乐天提供(2009年7月22日拍摄于宜昌市)

“金环日食”奇观上演 来看看日食背后那些秘密②

  图6 2019年12月26日阿联酋·阿布扎比的日环食 摄影:杨勇

  日食规律

  人类很早就开始注意到了日食的出现会有一些规律。除了“日食则朔,月食则望”,还不难发现一个有趣的规律。以2019年和2020年的日食与月食情况举例,对两年内发生的日食(或月食)最大食时刻进行了统计(表3)。

“金环日食”奇观上演 来看看日食背后那些秘密②

  表3 2019年与2020年日食与月食最大食时刻统计表(格林尼治标准时)

  最大食时刻:对于日食即指日食食分最大的时刻,对于月食即指地球影锥轴线最接近月球中心的时刻。

  数据来源:NASA’s Goddard Space Flight Center Eclipse Web Site

  表中统计直观地展示了“大多数日食与月食是成对出现的”这个规律。如果我们再进一步关注它们的发生时刻,则不难发现每一对日食与月食之间的间隔大约是在14或15天左右。对以上五对日月食时间间隔做简单的平均值计算,结果大约是14.844天。而一个朔望月(指月球连续两次合朔的平均时间间隔)的周期大约是29.53天,29.53÷2=14.765天。如果我们将上图的样本扩大,每一对日食与月食的平均时间间隔一定会更接近14.765天这个数字。也就是说,在一个朔望月当中,如果出现了日食(或月食),那么半个朔望月后,很大概率将会发生月食(或日食)。当然,这个规律显得不是那么保险。这是因为日-地-月三者位置关系还需要在空间当中进行考虑,这远远要比以上我们提及的这几个周期要复杂得多。

  沙罗周期

  除了以上这个显而易见又略显粗糙的规律,古巴比伦天文学家还发现了一个关于日食月食的更加复杂的周期性规律。即223个朔望月≈242个交点月≈239个近点月,这个时间长度大约是18年11天又8小时,这就是沙罗周期。其中,交点月为月球连续两次黄道升交点(或降交点)的平均时间间隔,约为27.21天;近点月为月球连续两次经过近地点的平均时间间隔,约为27.55天。

  这意味着,每经过一个沙罗周期,月球所经历的朔望月、交点月和近点月几乎都是整数,地球、太阳和月球三者的几何关系几乎完全一样:月球在相同的交点上,有着相同的相位和与地球相同的距离。知道在某一天曾经发生一次食,则经过一个沙罗周期之际,几乎一样的日食或月食将再度发生。刚刚发生的这一次日环食(2019年12月26日)属于第132号沙罗序列。这个序列的下一次日食将会发生在2038年1月5日。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图7 136号沙罗周期的九次日食带示意图

  图片来源:NASA’s Goddard Space Flight Center Eclipse Web Site

  制图:Michael Zeiler, Xavier Jubier, Fred Espenak, NASA Goddard Space Flight Center

  同一沙罗周期的日食,太阳、地球、月球的相对位置基本一样,因此食带形状看起来都很相像。但由于地球自转的因素,使得每次食带的具体位置有所移动。

  日食计算与预测

  根据沙罗周期进行运算,属于同一序列的日食在同一地点连续发生两次的最短间隔,至少需要经过三个沙罗周期,也就是大约54年33天。由于中心食的关注度明显要高于日偏食。因此,当我们实际考察某地连续两次发生中心食的时间间隔时,就会发现实际情况要比这复杂得多。

  以北京为例,在1802年8月28日15:46:38发生了一次日环食食甚后,下一次日食中心食将发生在2035年9月2日08:33:25,这是一次日全食。这中间竟然间隔了233年61天16小时52分30秒。在中国近现代史上最为激荡的20世纪这一百年中,采用美国国家航空航天局戈达德空间飞行中心日食月食网站(NASA Goddard Space Flight Center Eclipse Web Site)的计算器进行推算,北京地区(坐标采用东经116°25′,北纬39°55′计算)竟然一场日食中心食都看不到。这对于北京地区(未考虑北京行政区域在不断扩大)的天文工作者和爱好者来说,真的是非常遗憾!

  而在下个世纪,2118年3月22日和2124年5月14日,北京就会先后有一次日环食和日全食,间隔仅有6年多!因此,单纯笼统地说每隔多久,同一个地点就会出现一次日食中心食,是很不严谨的说法。这也是很多公众媒体在进行报道时常见的误导。

  总之,日食月食的计算与预测,是一个非常复杂的数学问题。过程中需要考虑到非常多的修正值。以上引用的一些常量(如朔望月长度),仅仅只是一个时期之内测量出的统计值。以上展示的原理,也仅仅只是最基本的一些思路。有兴趣的读者可以根据公开的天文数据做更精确的运算,说不定可以发现一些更有趣的规律。

  未完待续

  作者简介

  克留:天津科普作家协会理事,北京天文学会会员,国家天文台沙河科普基地教师。

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 山东青岛:高速路口防疫忙

  • 绍兴"点对点"专列接务工人员返岗

独家策划

推荐阅读
非疫情防控重点地区开始实行差异化防控、精准防控。哪些省份已下调应急响应级别?如何落实分区分级精准复工复产?带你一图读懂。
2020-02-27 13:31
几十年来,研究人员一直在对原子和离子进行激光冷却实验,但迄今无人观察到两者在极低温度下的混合物。但此前的研究表明,电场会对原子—离子碰撞产生负面影响,使其发热,我们通过使用重离子镱和轻原子锂减轻了热效应。
2020-02-27 09:29
美国麻省理工学院(MIT)科学家在最新一期《细胞》杂志撰文称,他们新研制出的一种深度学习人工智能(AI),鉴定出一种全新抗生素。”  为寻找新型抗生素,研究团队开发出了一个神经网络模型,这是一种受大脑结构启发的AI算法,可逐个原子学习分子的结构特性。
2020-02-27 09:28
日本理化学研究所的一个研究小组开发出称为“RADICL-seq”(RNA And DNA Interacting Complexes Ligated And sequence)的方法,可在整个基因组中全面检测细胞核内RNA和基因组DNA(染色质)之间的相互作用。
2020-02-27 09:27
在实现优雅自然地行走这方面,机械足和机器人的表现一直不尽如人意,步态运动的协调性和机械足的灵巧度,也一直是业界难题。只有更好地理解人类在肢体动作中如鱼得水的真正原因,才有望实现更为流畅自如的机械运动,或许,机械的“生命”,就是从仿生开始的。
2020-02-27 09:27
几十年来,研究人员一直在对原子和离子进行激光冷却实验,但迄今无人观察到两者在极低温度下的混合物。但此前的研究表明,电场会对原子—离子碰撞产生负面影响,使其发热,我们通过使用重离子镱和轻原子锂减轻了热效应。
2020-02-27 09:26
近日,微软小冰团队公开了Avatar Framework首批限定测试用户体验片段。”  以暗恋过的初中同桌女生为原型,李博(化名)通过微软小冰人工智能框架创造的首批虚拟人为自己定制了AI女友小缃。
2020-02-27 09:25
2月25日上午,由河南省工信厅牵头组织技术人员支援的河南亿信医疗器械公司40条口罩生产线一次建成,全部满产后将使河南口罩日产能增加200万只以上。当天晚上,由中铁装备战略规划部部长桑应豪带领的14名技术骨干、由郑煤机“大国工匠”李向宾带领的12名技术骨干到达河南亿信医疗器械公司。
2020-02-27 09:24
在嫦娥四号着陆点附近,完整的月海玄武岩覆盖在月表以下大于40米的深度。
2020-02-27 08:01
2月26日,在山东省青岛市市北区一处集中隔离医学观察点,两台机器人“护工”正式上岗。图为在一处集中隔离医学观察点,医务人员为送餐机器人加装矿泉水,准备送到隔离房间。
2020-02-27 09:24
陶文铨跟孩子们分享西安交大当年的西迁历史,讲我国自主研发原子弹与氢弹的故事,讲核潜艇研制的艰难历程。王树国则嘱托,不要将疫情当成过眼云烟,青少年们也该从战“疫”中感悟到更多课本之外的东西。
2020-02-27 09:23
新冠肺炎疫情让“消毒”成为高频词汇,75%浓度的酒精、84消毒液、免洗洗手液等一度成为紧缺物资。李晋闽指出,深紫外LED在技术层面仍面临从核心材料到器件工艺的许多挑战,技术的突破和进步是市场发展的根基。
2020-02-27 09:23
生态环境部《指南》建议“各地可根据本地区情况,因地制宜选择肺炎疫情医疗废物应急处置技术路线”,同时推荐“宜采用高温焚烧方式处置”。欧阳一琼强调,新冠肺炎医废处置整体流程与普通医废相似,“但是对个人防护和收运环节的要求更加严格”。
2020-02-27 09:22
制定可食用动物白名单,既能避免一刀切,维护家禽家畜养殖者利益,也明确了禁食范围,让管理清晰明确、容易理解。禁食野生动物,是维护人类文明自身的需要,体现的是对生命的尊重,对自然的敬畏,是我国生态文明建设的题中应有之义。
2020-02-27 09:21
中国医学科学院北京协和医学院援鄂抗疫医疗检测队火速组成,吴晨带队,驰援一线。出发前,北京协和医学院党委书记吴沛新给吴晨下了命令:高质量完成检测任务,你怎么把队员带去武汉,就怎么把他们带回来。
2020-02-27 09:20
基于医疗影像大数据的人工智能设备,作为人工智能医疗版图中相对最成熟、落地最快的领域,在新冠肺炎疫情的防治中确实充当了排头兵。为了更好地释放数据效能,韩夏表示:“下一步要会同多部门,加强数据信息共享,通过多渠道、多种类、多维度数据的整合,提升大数据技术支撑疫情防控的能力水平。
2020-02-27 09:20
人类的历史是一部与疾病包括病毒斗争的历史,远的例如天花病毒,近的包括脊髓灰质炎病毒,我们人类都最终战胜了这些极其可怕的病毒。总之,病毒颗粒感染机体后,体内可产生针对病毒蛋白质的多种不同的抗体,但大多数抗体其实没有抗病毒的作用,只有识别病毒颗粒表面蛋白质的抗体,才可能有抗病毒作用。
2020-02-27 09:14
日前,天津大学张雷教授团队成功开发出新型蚕丝,使天然蚕丝具备优异抗菌性能,有望在生物医疗领域发挥重要应用价值。天津大学张雷教授团队用一系列不同粒径的纳米银颗粒喂食家蚕,研究纳米银颗粒在家蚕不同器官中的分布、积累情况。
2020-02-26 09:25
记者近日从香港城市大学获悉,由该校学者领导的研究团队,成功研发出一款新型液滴式发电机。“我们的研究显示,一滴100微升的水滴由15厘米的高度滴下,可产生超过140伏特电压,发电机产生的电能足以点亮100盏小LED灯。
2020-02-26 09:24
记者在采访中了解到,青海回答研究管护生态的必答题时,运用的仍然是科技利器及创新成果落地应用。今日青海,一系列行之有效的举措全面推进,青海正用实际行动留住蓝天绿水和青山,用科技成果夯实百姓幸福的基石。
2020-02-26 09:24
加载更多