点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:“金环日食”奇观上演 来看看日食背后那些秘密②
首页> 科普频道> 天文前沿 > 正文

“金环日食”奇观上演 来看看日食背后那些秘密②

来源:光明网2019-12-30 18:27

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  上一篇我们带大家了解了日食的成因,以及我国对于日食的早期记载,神奇的日食,是大自然赠予我们的礼物,今天我们继续开启日食知识之旅~

  日食名词

  根据月面遮盖日面程度的不同,日食有不同的分类。整个过程中,月面中心与日面中心最为靠近的时候:

  月面能够完整地把整个日面遮住,就叫做日全食。

  月面边缘全部进入日面轮廓内,但还留有一圈日面的圆环,就叫做日环食。

  日全食与日环食统称为“中心食”。

  月面边缘没有全部进入到日面轮廓里,就叫做日偏食。日全食与日环食的过程中,一定会发生日偏食。但日偏食发生时未必会出现日环食、日全食。

  除此之外,还有一种极为罕见的日食,在其核心食带的两端,看到的是日环食。在核心食带的中间部分,看到的则是日全食。这种日食一般被称为“全环食”或“混合食”。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图1 日食的种类(距离与大小不依实际比例)。A 本影区出现日全食。日全食发生时,太阳视直径略小于月球视直径;B 伪本影区出现日环食。日环食发生时,太阳视直径略大于月球视直径;C 半影区出现日偏食 图片来源:维基百科

  类似的情况,当地球运行到月亮和太阳连线上时,地球的影子投到月亮上,就会发生月食。由于篇幅有限,本文就不再对月食做太多分析了。

  日食食分

  以日食为例,日偏食或中心食偏食阶段的食分,是指太阳被月球遮蔽的角直径与太阳的角直径与之比。中心食食甚阶段的食分,是指月球角直径与太阳角直径之比。

  日偏食或中心食的偏食阶段,食分大于0小于1。

  日环食食甚时的食分,接近1但小于1。

  日全食食甚时,食分大于等于1。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图2 日食的食分示意图 图片来源:www.timeanddate.com

  很多公众媒体在进行日食的报道时,会提及食分的数值,但不会提及定义。因此很多人会把日食食分当做日面被月球遮盖的面积率。实际上这是错误的。以刚刚过去的这次(2019年12月26日)的日环食为例,北京仅能看到日偏食,食分约为0.15,实际上食甚时的遮盖面积仅为大约6.8%。

  日环食与日全食

  在我们的日常语汇当中,日全食被提及的频率往往会比日环食要高。因此很多人会以为日环食是日全食的一种特殊情况,且日环食会比日全食更为罕见。实际上,这也是完全错误的观念。

  首先,从日食分类来说,日环食与日全食统称为“中心食”,但两者被认为是不同类型的日食。

  其次,根据对公元前1999年至公元3000年这五千年当中的日食发生次数的统计(见表1),日环食发生的几率,比日全食还要高一些!

“金环日食”奇观上演 来看看日食背后那些秘密②

  表1 公元前1999年至公元3000年日食统计表 数据来源:NASA’s Goddard Space Flight Center Eclipse Web Site, Fred Espenak

  日食与月相

  在笔者的科普工作经历当中,有太多的公众将日月食的成因与月相变化的原因混为一谈,认为月亮的阴晴圆缺是由于地球的遮挡所造成的。诚然,这两者都是在一个圆面上产生的形状变化,但只要将两者进行简单的对比,就可以发现很明显的不同之处。月相变化显然不是由于某个球形实体遮挡而形成的。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图3 日环食期间的日面变化过程 拍摄&制图:孙思

“金环日食”奇观上演 来看看日食背后那些秘密②

  图4 月相变化过程图 素材来源:Ernie Wright,Scientific Visualization Studio 制图:克留

  我们知道,平面上两个圆形的位置关系有相离、外切、相交、内切、内含五种情况。我们如果将太阳与月球这两个球体投影为圆形,就可以用圆与圆的位置关系来帮助理解日食过程中的重要时间节点。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图5 平面上的圆与圆的位置关系示意图 图片来源:《义务教育教科书:数学(九年级上册)》人民教育出版社2013年版,第103页

  以中心食的核心食带为例,当日面与月面两个圆形:

  1、第一次外切时,这个时刻叫做“初亏”。日面有一个边缘即将开始被遮挡。这是日食的开始。

  2、第一次相交的时间过程,叫做“日偏食”或“偏食阶段”

  3、第一次内切时,如果是日全食,这个时刻叫做“食既”。这时日面完全被月面遮挡住,天空仿佛突然黑了下来。如果是日环食,这个时刻叫做“环食始”。这时月面完全进入到日面范围内,太阳即将会变成出一轮明亮的光环。

  4、当月面中心与日面中心最接近的时刻,叫做“食甚”。如果是日全食,太阳这时会变得最黑。如果是日环食,这时的太阳就变成了一个非常完美的圆形光环。

  5、第二次内切时,如果是日全食,这个时刻叫做“生光”,日面边缘即将开始变亮。如果是日环食,这个时刻叫做“环食终”,能够看到月面即将开始移出日面的范围内。

  6、第二次相交的时间过程,叫做“日偏食”或“偏食阶段”

  7、第二次外切时,这个时刻叫做“复圆”。日面完全恢复圆形。日食结束。

  对于日全食来说,“食既”之前与“生光”之后,都有一瞬间,日面的边缘处有一个点会特别明亮,就像一颗璀璨的明珠,这个现象被称为“贝利珠”。

  对于最多只能看到日偏食的情形,则全程只有“初亏”“食甚”“复圆”三个节点。

“金环日食”奇观上演 来看看日食背后那些秘密②

  表2 日面与月面两个圆形位置关系示意

  日环食和日全食关键阶段图片为作者利用Stellarium 0.19.2软件演示截图,两张贝利珠图片由王乐天提供(2009年7月22日拍摄于宜昌市)

“金环日食”奇观上演 来看看日食背后那些秘密②

  图6 2019年12月26日阿联酋·阿布扎比的日环食 摄影:杨勇

  日食规律

  人类很早就开始注意到了日食的出现会有一些规律。除了“日食则朔,月食则望”,还不难发现一个有趣的规律。以2019年和2020年的日食与月食情况举例,对两年内发生的日食(或月食)最大食时刻进行了统计(表3)。

“金环日食”奇观上演 来看看日食背后那些秘密②

  表3 2019年与2020年日食与月食最大食时刻统计表(格林尼治标准时)

  最大食时刻:对于日食即指日食食分最大的时刻,对于月食即指地球影锥轴线最接近月球中心的时刻。

  数据来源:NASA’s Goddard Space Flight Center Eclipse Web Site

  表中统计直观地展示了“大多数日食与月食是成对出现的”这个规律。如果我们再进一步关注它们的发生时刻,则不难发现每一对日食与月食之间的间隔大约是在14或15天左右。对以上五对日月食时间间隔做简单的平均值计算,结果大约是14.844天。而一个朔望月(指月球连续两次合朔的平均时间间隔)的周期大约是29.53天,29.53÷2=14.765天。如果我们将上图的样本扩大,每一对日食与月食的平均时间间隔一定会更接近14.765天这个数字。也就是说,在一个朔望月当中,如果出现了日食(或月食),那么半个朔望月后,很大概率将会发生月食(或日食)。当然,这个规律显得不是那么保险。这是因为日-地-月三者位置关系还需要在空间当中进行考虑,这远远要比以上我们提及的这几个周期要复杂得多。

  沙罗周期

  除了以上这个显而易见又略显粗糙的规律,古巴比伦天文学家还发现了一个关于日食月食的更加复杂的周期性规律。即223个朔望月≈242个交点月≈239个近点月,这个时间长度大约是18年11天又8小时,这就是沙罗周期。其中,交点月为月球连续两次黄道升交点(或降交点)的平均时间间隔,约为27.21天;近点月为月球连续两次经过近地点的平均时间间隔,约为27.55天。

  这意味着,每经过一个沙罗周期,月球所经历的朔望月、交点月和近点月几乎都是整数,地球、太阳和月球三者的几何关系几乎完全一样:月球在相同的交点上,有着相同的相位和与地球相同的距离。知道在某一天曾经发生一次食,则经过一个沙罗周期之际,几乎一样的日食或月食将再度发生。刚刚发生的这一次日环食(2019年12月26日)属于第132号沙罗序列。这个序列的下一次日食将会发生在2038年1月5日。

“金环日食”奇观上演 来看看日食背后那些秘密②

  图7 136号沙罗周期的九次日食带示意图

  图片来源:NASA’s Goddard Space Flight Center Eclipse Web Site

  制图:Michael Zeiler, Xavier Jubier, Fred Espenak, NASA Goddard Space Flight Center

  同一沙罗周期的日食,太阳、地球、月球的相对位置基本一样,因此食带形状看起来都很相像。但由于地球自转的因素,使得每次食带的具体位置有所移动。

  日食计算与预测

  根据沙罗周期进行运算,属于同一序列的日食在同一地点连续发生两次的最短间隔,至少需要经过三个沙罗周期,也就是大约54年33天。由于中心食的关注度明显要高于日偏食。因此,当我们实际考察某地连续两次发生中心食的时间间隔时,就会发现实际情况要比这复杂得多。

  以北京为例,在1802年8月28日15:46:38发生了一次日环食食甚后,下一次日食中心食将发生在2035年9月2日08:33:25,这是一次日全食。这中间竟然间隔了233年61天16小时52分30秒。在中国近现代史上最为激荡的20世纪这一百年中,采用美国国家航空航天局戈达德空间飞行中心日食月食网站(NASA Goddard Space Flight Center Eclipse Web Site)的计算器进行推算,北京地区(坐标采用东经116°25′,北纬39°55′计算)竟然一场日食中心食都看不到。这对于北京地区(未考虑北京行政区域在不断扩大)的天文工作者和爱好者来说,真的是非常遗憾!

  而在下个世纪,2118年3月22日和2124年5月14日,北京就会先后有一次日环食和日全食,间隔仅有6年多!因此,单纯笼统地说每隔多久,同一个地点就会出现一次日食中心食,是很不严谨的说法。这也是很多公众媒体在进行报道时常见的误导。

  总之,日食月食的计算与预测,是一个非常复杂的数学问题。过程中需要考虑到非常多的修正值。以上引用的一些常量(如朔望月长度),仅仅只是一个时期之内测量出的统计值。以上展示的原理,也仅仅只是最基本的一些思路。有兴趣的读者可以根据公开的天文数据做更精确的运算,说不定可以发现一些更有趣的规律。

  未完待续

  作者简介

  克留:天津科普作家协会理事,北京天文学会会员,国家天文台沙河科普基地教师。

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 山东青岛举行海上巡游迎接中国航海日

  • 漫画视界|警惕虚假购物、服务类诈骗

独家策划

推荐阅读
防晒,究竟该如何掌握分寸,才能在抵御伤害与拥抱健康之间找到平衡点?
2025-07-11 09:58
生命只有一次,心脏健康不容忽视。唯有提高对心梗症状的警觉性,掌握正确的急救方法,才能为生命筑起一道坚实的“心”防线。
2025-07-11 09:58
晒后背是一种传统的养生方法,符合中医“冬病夏治”的理论,其核心在于借助盛夏充沛的自然阳气,通过阳光照射背部,来提升人体自身阳气。
2025-07-11 09:58
截至7月10日,我国“北气南下”能源大通道累计输气量突破1000亿立方米,安全平稳运行超2000天,标志着这条纵贯南北的能源大动脉在保障国家能源安全、推动绿色转型方面取得重大进展。
2025-07-11 04:55
从自然资源部新一轮找矿突破战略行动办公室了解到,今年上半年,全国新发现矿产地38处,同比增长31%;新发现矿产地中,大中型矿产地25处。
2025-07-11 04:10
时下,智能手机已成为人们获取信息、社交娱乐的重要工具。多学科专家指出,当我们刷手机出现注意力极度涣散、缺乏独立思考能力、情绪化反应严重、深度学习能力下降、空虚感增加等症状时,就表明我们的大脑正在被“腐蚀”。所谓的“脑腐”,即因长期暴露于碎片化信息而引发的认知衰退与脑功能损伤。
2025-07-11 04:10
由于肉眼很难发现水污染的情况,洪水之后饮水需要特别注意,避免直接饮用自来水、山泉水、河水、湖水等。肖丹提醒,如果不适症状较为严重,出现持续高热、剧烈呕吐、严重腹泻、脱水、意识障碍等,或皮肤干燥、眼窝凹陷、少尿等情况,应及时就医。
2025-07-10 09:34
国家自然科学基金委员会近日发布消息,自然科学基金委制定重大非共识项目试点实施方案,将在2025年启动资助试点。自然科学基金委作为我国资助基础研究的主渠道,制定了一系列创新举措。
2025-07-10 09:33
嫦娥六号月球样品的相关研究成果,引起了国际学术界的高度关注。这1935.3克宝贵的月壤,使得月球样品研究进入“嫦娥时代”,开启了人类认识月球的新纪元,也为中国月球研究走向世界前列奠定了基础。 一年来,中国科学家们已经利用嫦娥六号月球样品取得许多科学突破。
2025-07-10 09:32
2024年嫦娥六号任务首次从南极-艾特肯盆地内部采回月球样品,为揭示该区域物质成因提供了直接证据。综合元素和矿物组成分析,南极-艾特肯盆地镁环物质主要为斜长石(63%~67%)和低钙辉石(25%~27%)组成的亚铁苏长岩。
2025-07-10 09:32
7月9日,在北京航天城,神舟十九号航天员蔡旭哲(中)、宋令东(右)、王浩泽在记者见面会上敬礼致意。 在神舟十九号乘组中,航天员王浩泽也是一位90后,更成为首位进驻空间站的女航天飞行工程师。
2025-07-10 09:30
随着科技创新与产业创新深度融合,人工智能技术助力建材行业向更智能、更绿色、更高端方向变革。“通过数字化转型,建材企业可基本实现研发设计数字化、生产运营一体化、客户服务敏捷化,提升决策效率、协同能力和服务水平,快速提升生产力和核心竞争力。
2025-07-09 09:40
记者8日从湖南省自然资源厅获悉,通过创新地质找矿理论,经过长期勘探,湖南省郴州市临武县鸡脚山矿区已探获超大型蚀变花岗岩型锂矿床,共提交锂矿石量4.9亿吨,氧化锂资源量131万吨。
2025-07-09 09:39
根据国家卫生健康委8日晚间发布的通知,今后“颈深淋巴管/结—静脉吻合术”将不得应用于阿尔茨海默病治疗。“颈深淋巴管/结—静脉吻合术”是将颈部深层淋巴管或淋巴结与邻近的静脉进行吻合的手术,近年来部分医疗机构将其用于治疗阿尔茨海默病,引发争议。
2025-07-09 09:39
国家发展改革委、工业和信息化部、国家能源局日前发布《关于开展零碳园区建设的通知》。支持企业对标标杆水平和先进水平,实施节能降碳改造和用能设备更新,鼓励企业建设极致能效工厂、零碳工厂。
2025-07-09 09:37
近日,中国科学院近代物理研究所科研人员依托兰州重离子加速器冷却储存环,精确测量了极缺中子原子核硅-22的质量,实验发现硅-22的质子数14是一个新幻数。
2025-07-09 09:35
国家自然科学基金委员会7日发布消息,自然科学基金委近日制定重大非共识项目试点实施方案,将在2025年启动资助试点。
2025-07-08 09:20
近日,由农业农村部南京农业机械化研究所联合有关单位研制的全自动水稻覆膜插秧技术装备在江苏省靖江市投入使用,开启了我国水稻覆膜插秧新模式。
2025-07-08 09:11
日前,全球领先的720V高压固态钠盐电池,在位于内蒙古自治区鄂尔多斯市达拉特旗的建亨奥能科技有限公司正式量产,标志着中国成为全球第三个实现固态钠盐电池商用量产的国家。
2025-07-08 09:10
从国家自然科学基金委员会获悉,该委日前制定了重大非共识项目试点实施方案,将在2025年启动资助试点。
2025-07-08 05:05
加载更多