正在阅读: 用了诺奖技术?首张黑洞照片背后的科学难题
首页> 科普频道> 天文前沿 > 正文

用了诺奖技术?首张黑洞照片背后的科学难题

来源:光明网2019-04-16 10:16

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  北京时间 4月10日21点,事件视界望远镜(EHT)发布了人类首张黑洞照片,这是黑洞研究的重大成果,也是继2015年引力波事件之后,天文研究成果又一次占据新闻头条。如今照片已经公布,让我们来探求一下事件视界望远镜(EHT)背后的故事。

用了诺奖技术?首张黑洞照片背后的科学难题

图1.组成事件视界望远镜(EHT)的八台望远镜 (Vertatschitsch+2015)

  事件视界望远镜(EHT)由8台散落多处的毫米波/亚毫米波望远镜组成(如图1),在1.3毫米波段可以实现10微角秒的空间分辨率,相当于银河系中心黑洞的施瓦西半径尺度,具有在地球上(用亚毫米波段)可以达到的最高空间分辨率的能力。

  射电综合孔径技术 诺贝尔奖级的技术

  EHT是怎样实现这极致的空间分辨率的呢?

  由于衍射效应,望远镜的空间分辨率R主要由观测波长λ和望远镜口径D决定:

用了诺奖技术?首张黑洞照片背后的科学难题

  比如我国贵州的500米口径射电望远镜FAST,在21cm波长处的空间分辨率约为3角分。要想获得更高的空间分辨率,要么降低观测波长,要么增加望远镜口径。事件视界望远镜所做的就是在这两个方向同时发力,从而实现极致的空间分辨率。

  不是望远镜口径吗,而EHT是八台独立的望远镜啊,怎么解释?

  这里面涉及到一项诺贝尔奖级技术,射电综合孔径技术。1974年的诺贝尔物理学奖颁给了英国剑桥大学的马丁·赖尔和安东尼·休伊什,赖尔教授的获奖原因主要源于他对射电综合孔径技术的贡献。

用了诺奖技术?首张黑洞照片背后的科学难题

  射电综合孔径技术,简单来说,天上射电源的图像与地面干涉天线的观测结果成傅里叶变化关系,不同天线的干涉结果相综合,通过傅里叶变换,可以完成对射电源的成图观测,其空间分辨率等效于口径为基线长度的单天线望远镜。基线长度B,即干涉天线间的距离,代替望远镜口径D,与观测波长λ一起成为干涉阵望远镜空间分辨率RA的决定因素。

用了诺奖技术?首张黑洞照片背后的科学难题

  甚长基线干涉技术(VLBI)千里眼

  等等,射电综合孔径技术跟甚长基线干涉技术又有什么关系呢?

  甚长基线干涉技术就是在射电综合孔径技术的基础上发展出来的,甚长基线干涉中的各个天线不再直接电缆相连而是独立记录数据,这样基线长度可以不受地理限制,甚至可以实现空间轨道卫星与地面天线的干涉成图,达到极致空间分辨率(目前空间甚长基线干涉已经实现,但由于观测频率比较低,空间分辨率暂时还不如事件视界望远镜EHT)。事件视界望远镜由八台独立记录数据的毫米/亚毫米波望远镜组成,分布在南北美洲、夏威夷和南极洲,在230GHz和345GHz频率上,对银河系中心和M87的黑洞进行极高分辨率的成图观测。

用了诺奖技术?首张黑洞照片背后的科学难题

图2.两台干涉天线的时延和相关处理

  不同地点的天线对准同一个观测源,电磁信号达到不同天线的时间会有差别,并由于地球自转这个时间差在不断变化,称为时间延迟和时延率(图2)。八台望远镜独立记录的数据将被带到德国/美国的相关处理中心,通过寻找最大相关幅度的方法,求出两组观测数据的时延和时延率。消除时间延迟后,两两干涉的观测数据就能开始综合成图了。

  和一般甚长基线干涉观测一样,为满足时延求解的需要,事件视界望远镜(EHT)也需要高精度、高稳定的时间信息,其中氢原子钟因稳定性高而被普遍使用,同时使用全球定位系统(GPS)来同步各个台站的时间。

  甚长基线干涉(VLBI)因记录的数据包含幅度、相位信息,且由于EHT的观测频率极高(230GHz和345GHz),采用的是4GHz带宽,数据记录率就会很高。EHT采用目前最先进的R2DBE进行高速采样,可以实现16Gbps的高数据采样率,配合使用最新一代VLBI数据记录系统Mark6进行16Gpbs的数据记录(超过5G网络的最高速度10Gpbs)。值得一提的是,我国贵州的FAST望远镜同样使用R2DBE和Mark6进行甚长基线干涉观测的数据采样和记录。在这样的数据率下,EHT一个晚上记录的数据量可以达到2PB(2000TB)。甚长基线干涉因为数据量大,一般采用携带硬盘的方法来传输数据,同样EHT也将大量硬盘携带至美国和德国的相关处理中心,进行后续的数据处理。

  甚长基线干涉中,因为干涉天线相距较远,所在的天气环境等因素都不一样,会带来相位误差,会严重影响成图结果。在20世纪70年代闭合相位技术发明之后,大气和时钟误差随机效应导致的相位误差得以消除,甚长基线干涉技术逐渐走向成熟。闭合相位要求至少有3台干涉天线,EHT包含8台毫米波/亚毫米波望远镜,包括坐落于智利的ALMA毫米波望远镜。

  事件视界望远镜(EHT)拥有极致的观测频率、基线长度和技术装置,使人类首次对银河系中心黑洞进行成图。

  作者:陈如荣,系中国科学院国家天文台助理研究员,主要研究领域为致密天体的甚长基线研究。

[ 责编:蔡琳 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 第42届中国·哈尔滨国际冰雪节开幕

  • 马德里:彩车巡游迎接“三王节”

独家策划

推荐阅读
“一张网”的构建是我国测绘地理信息事业转型升级的生动实践。
2026-01-06 09:53
具身智能作为人工智能与机器人科学交叉的前沿领域,是新一轮产业变革的技术引擎。
2026-01-06 02:45
我国首次航天员洞穴训练日前在重庆市武隆区圆满结束,28名航天员参加了这次训练。
2026-01-06 02:45
近日,国务院办公厅印发《关于加快场景培育和开放推动新场景大规模应用的实施意见》,意见明确要求构建高水平矿山安全生产智能化应用场景。
2026-01-06 03:05
拔尖创新人才的培养成长,与平台和环境密切相关。记者注意到,与长期以来以竞赛选拔为主导的“关门培养”模式不同,近年来越来越多的中学、高校开始设立新型实验班。这些实验班面向更多学子敞开大门,以综合素质培养为落脚点实施个性化育人,为拔尖创新人才成长发展开辟了新空间。
2026-01-06 03:05
我是一名铁路机车调试工,在中国中车株洲电力机车有限公司干了33年,摸过超过一千万根线缆,听过约十万次受电弓升起的声音。这些年,我带过不少刚毕业的学生,也面试过很多从院校走出来的年轻人。他们理论扎实、认真仔细,但一上手调试真车,常常“当场犯懵”。我发现一个问题:学校教的和现场用的,中间隔着一道“看不见的墙”。
2026-01-06 03:05
面对市场机遇,产业链上市公司正加速卡位布局,以技术升级主动迎接L3级自动驾驶的商业化浪潮。
2026-01-05 09:13
接下来,我们计划测量能量范围更为宽泛的质子能谱,最终覆盖4个量级的能量区间。
2026-01-05 09:08
国务院关于促进科技成果转化工作情况的报告近日提请十四届全国人大常委会第十九次会议审议。报告显示,“十四五”以来,我国科技成果转化实现量质齐升,有效推动科技成果向现实生产力转化。
2026-01-05 03:30
棉花是重要经济作物,其中,陆地棉的纤维产量超过全球总量的95%,在我国栽培广泛。陆地棉原产于美洲,在驯化改良过程中经历多次基因组重排。
2026-01-05 03:30
想象一下,机器的“眼睛”不仅能像人眼一样广阔扫视,还能瞬间锁定关键目标,进行精细“凝视”……或许,这将不再是科幻情景。
2026-01-05 03:30
“深海一号”气田是中国迄今为止自主开发的作业水深最深、地层温压最高、勘探开发难度最大、天然气产能最大的海上气田,最大作业水深超1500米。
2026-01-04 09:00
细胞膜蛋白是药物作用的关键靶点,而核酸适体是一类能够高特异性、高亲和力结合靶标分子的寡核苷酸。
2026-01-04 08:59
意见提出到2030年电网资源优化配置能力有效增强,“西电东送”规模超过4.2亿千瓦,新增省间电力互济能力4000万千瓦左右,支撑新能源发电量占比达到30%左右,接纳分布式新能源能力达到9亿千瓦,支撑充电基础设施超过4000万台。
2026-01-04 08:58
全国农业农村厅局长会议日前在北京召开。会议指出,2025年,各级农业农村部门扎实有力推进乡村全面振兴和农业强国建设重点工作,
2026-01-04 02:05
农村冬闲时节,如今,大伙儿哪能闲得住?这正是提高农民技能水平、拓宽就业门路的好时候。 “我是一位被小奶娃和锅碗瓢盆‘拴住’的普通学员,曾经天天围着锅台转。
2026-01-04 02:05
在东西横跨1600公里的陇原大地上,一场以科技为引擎的农业变革正悄然发生。由甘肃省科协联合教育部门推动建成的62家科技小院,通过“产学研用”深度融合,
2026-01-04 02:05
持续涌现的AI应用场景,促进技术与产业协同发展,催生新业态、新模式、新动能。“高价值的AI场景创新,是创新要素在市场供需驱动下高效集聚、协同耦合的结果,不能脱离市场逻辑主观臆断。
2026-01-05 09:07
2024年,中国制造业顶压前行、向新向优,制造强国发展指数与德国和日本处于同一区间,进入全球制造强国第二阵列,成为继美国、德国、日本后第四个迈入全球制造强国行列的国家。
2025-12-31 08:56
突破性成果勾勒出我国高水平科技自立自强的清晰轨迹。
2025-12-31 08:58
加载更多