点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:聆听五音俱全的引力波宇宙 | ④脉冲星计时阵引力波探测
首页> 科普频道> 天文前沿 > 正文

聆听五音俱全的引力波宇宙 | ④脉冲星计时阵引力波探测

来源:光明网2020-04-23 13:12

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

  大家好,我是国家天文台的陆由俊。今天我们接着谈引力波,脉冲星计时阵。

  除了人造的“耳朵”之外,我们还可以利用宇宙中的天然的引力波探测器——脉冲星计时阵(pulsar timing array; PTA)来“听”约在十亿分之一赫兹至百万分之一赫兹的甚低频引力波。

 聆听五音俱全的引力波宇宙 | ④脉冲星计时阵引力波探测 

图:脉冲星艺术想象图(Credit: NASA)

  脉冲星是快速旋转的中子星,同时它们还带有较强的偶极磁场(类似于地球磁场),沿着磁轴方向或者说磁场的两极方向(好比地球磁场的两极)会产生射电辐射。

  一般而言,脉冲星的磁轴与自转轴是不重合的,随着脉冲星的自转,它产生的射电辐射束有可能扫过地球。每当射电辐射束扫过地球时,地球上的射电望远镜就会收到一个射电脉冲。在没有任何噪声或干扰的理想情况下,射电望远镜会接收到一系列间隔相等的脉冲。

  周期约为毫秒级的脉冲星称之为毫秒脉冲星,它们脉冲的周期就相当稳定,几乎是宇宙中最稳定的天然时钟,周期变化率仅为10-20量级,完全可以忽略不计。因此它们产生的脉冲信号的到达时间也是可以被准确预测的。

  而当引力波从毫秒脉冲星与地球之间穿过时,引力波会使地球与脉冲星之间的距离发生微小的变化,使得来自脉冲星的脉冲传播至地球的到达时间也会发生细微的变化。通过观测脉冲到达的时间变化,也就能来探测引力波信号。同时监测很多颗稳定毫秒脉冲星的脉冲到达时间及其变化,就可以准确地测量引力波,这就是所谓的脉冲星计时阵测引力波。

  当然引起脉冲到达时间变化的原因可能不只是引力波,还有许多噪声会影响脉冲的到达时间。不过所幸的是,不同的噪声对不同的脉冲星影响不同,比如有的噪声只存在于部分脉冲星的信号里,有的噪声在不同脉冲星信号里遵循一定的变化规律,而引力波信号则会以特定的模式影响到每一颗脉冲星的脉冲信号到达时间。因此我们就需要通过对多颗脉冲星信号的到达时间的长期监测,来鉴别哪些是噪声,哪些是真正的信号。

  这些脉冲星就形成一个阵列,称之为“脉冲星计时阵”,它的“臂长”可以达到几千至几万光年,用于探测甚低频引力波。

  聆听五音俱全的引力波宇宙 | ④脉冲星计时阵引力波探测

图:PTA艺术想象图(Credit:David Champion)

  这里值得重点指出的是“脉冲星计时阵”中的“阵”指的是脉冲星的阵列,而并非是射电望远镜阵列。原则上来讲,哪怕只要有一台像“天眼”FAST这样大口径、高灵敏度的射电望远镜,对多颗脉冲星进行监测,也是可以做脉冲星计时阵测量的。不过实际观测上,当然是大口径的射电望远镜越多越好,这样不仅能同时监测多颗脉冲星,也能补充其它望远镜观测不到的脉冲星。

  现在的PTA有澳大利亚的帕克斯脉冲星计时阵(PPTA),欧洲脉冲星计时阵(EPTA),北美纳赫兹引力波天文台(NANOGrav)。他们观测了十多年,目前还没观测到引力波信号,但限制了引力波背景信号应小于10-15量级。为了更加充分地利用数据,提高灵敏度,三大脉冲星计时阵列的数据被结合到一起,形成了国际脉冲星计时阵(IPTA)。

  我国的“天眼”(FAST)结合其它40-60米射电望远镜,已经初步成立了中国脉冲星计时阵探测计划。未来将要建设的新疆奇台110米口径的射电望远镜等,也将脉冲星计时阵探测引力波作为它的主要科学目标。另外,低频引力波探测也是我国参与的国际平方公里阵(SKA)的主要科学目标之一。

  PTA可以用来探测星系中心的超大质量双黑洞旋近产生的连续引力波信号,以及来自宇宙中无数超大质量双黑洞的引力波叠加形成的随机背景信号,宇宙早期相变中的拓扑缺陷信号等等。拓扑缺陷会产生宇宙弦,宇宙弦就好比是宇宙中的“琴弦”,“琴弦”的断裂会产生较强的引力波。

  有趣的一点是,脉冲星计时阵列PTA还可以探测引力波的“记忆效应”。通常双黑洞并合后,引力波的应变降为零,也就消失了,但“记忆效应”说的就是,双黑洞并合后,引力波信号虽然恢复平静,却是一个不为零的值。

  今天我们就聊到这里。下一期,我们来谈谈宇宙微波背景辐射实验探测原初引力波。

  主讲人简介:陆由俊,中国科学院国家天文台研究员,中国科学院大学岗位教授,主要研究领域为理论天体物理,包括黑洞物理、引力波天体物理、活动星系核和类星体等。

[ 责编:赵宇豪 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 贵州台江:“舞龙嘘花”庆元宵

  • 新春生产忙

独家策划

推荐阅读
中国人工智能发展与安全研究网络主办,上海期智研究院、清华大学人工智能国际治理研究院承办
2025-02-12 19:16
2025年,空天院合成孔径雷达科研团队将继续研制8颗“女娲星座”合成孔径雷达卫星,届时“女娲星座”20颗在轨雷达卫星将实现全球组网运行,对地观测能力将大幅提升。
2025-02-12 10:07
这并不是一辆普通的复古电车,而是一部使用了16K全息数字技术、AI技术与四轴动感震动系统的数字电车。
2025-02-12 10:06
科学家们发现,水波涉及复杂的流体力学效应,能够构造丰富的拓扑矢量场用于粒子的操控。
2025-02-12 09:59
通过打造与自然和谐共生的生态经济圈,让生态保护和可持续发展得以兼顾,天目山保护区的实践,吸引了越来越多的关注,也为全球生物多样性保护提供了可借鉴的路径。
2025-02-12 09:57
春节期间,全国科技馆以“科技温暖中国年”为主题,为公众献上一系列融知识性、趣味性和人文关怀于一体的科普惠民活动。
2025-02-12 09:53
2月6日晚,“共和国勋章”获得者、我国第一代核潜艇工程总设计师黄旭华院士因病在武汉逝世,享年99岁。
2025-02-11 14:55
气动外形优化是航空设计中的核心技术,可以提升燃油效率、降低阻力,提高飞行器性能。该几何引擎无需庞大的数据集或繁琐的超参数调整,大幅降低了开展气动优化的复杂度和成本。
2025-02-11 09:43
最近,原子能院自主研发的两步法650毫米直径冷坩埚玻璃固化工程样机,完成90天连续运行试验,收获约52吨玻璃固化体,高放射性废物(以下简称“高放废物”)可被“封印”其中。
2025-02-11 09:43
记者从工业和信息化部获悉:截至目前,全国已建成3万余家基础级智能工厂、1200余家先进级智能工厂、230余家卓越级智能工厂,智能工厂梯度培育行动取得初步成效。
2025-02-11 09:32
提高产业链供应链韧性对于经济安全平稳运行至关重要。智能制造能够优化供需匹配过程、提高供需契合程度、赋能供需深度协同,通过影响企业的协调成本和生产成本产生“扩链”效应和“稳链”效应,推动供给来源多元化、供需关系稳固化,有助于缓解外部不确定性对供应链的冲击,进而提高产业链供应链的抗风险能力。
2025-02-11 09:31
市场监管总局日前发布的数据显示,截至2024年12月底,全国共有45.17万家智能机器人产业企业,注册资本共计64445.57亿元,企业数量较2020年底增长206.73%,较2023年底增长19.39%,呈稳健上扬态势。
2025-02-11 09:30
基于对生成型人工智能与史学研究关系的充分实践和思考,笔者认为,这项革命性的技术既非“潘多拉的盒子”,也不是万能宝箱。人工智能在史学研究中的应用存在不可避免的局限性,需要靠学者克服并化剑为犁。
2025-02-10 09:52
图为2月8日,影迷在成都天府长岛数字文创园哪吒形象雕塑前合影。当哪吒脚踏粒子幻化的风火轮掠过水墨渲染的蜀中山水,观众看到的不仅是一部电影的进化史,更是一个文明古国以科技赋能传统文化展现出的魅力。
2025-02-10 10:16
同新能源汽车一样,未来低空经济主力场景——电动垂直起降航空器(eVTOL)与无人机等的规模化推广应用,离不开高性能动力电池。燕绍九表示,下一步,研究中心将持续推动石墨烯锂电池材料的开发和工程化应用,为低空经济蓬勃发展贡献力量。
2025-02-10 10:13
近日,深度求索(DeepSeek)旗下DeepSeek-R1、V3、Coder等全系列大模型正式接入国家超算互联网平台。为促进超算算力一体化运营、打造国家算力底座,国家超算互联网平台去年4月正式上线,覆盖科学计算、工业仿真、人工智能(AI)模型训练等各个领域。
2025-02-10 10:11
当前AI(人工智能)正在逐渐改变世界,成为政府决策、医疗干预、金融交易、司法审议、环境保护、科学研究等领域的重要“参与者”。
2025-02-10 09:28
张学勇介绍,科研人员挑选了17个具有代表性的小麦品种,对它们染色体水平的基因组进行从头“组装”,最终得到了高质量的基因组数据。中国工程院院士刘旭认为,这项研究成果将推动我国小麦种质资源研究迈入大数据时代,加快重要基因的挖掘与利用。
2025-02-10 10:04
很多人说睡前吃宵夜不好,最常说的理由就是会长胖。其实,长胖跟吃夜宵本身并没有很大关系。
2025-02-08 10:16
冬日暖阳下,搭乘摇橹船泛舟浙江杭州西溪国家湿地公园,水道如巷,河汊如网,如入画境。
2025-02-08 10:14
加载更多