点击右上角微信好友
朋友圈
请使用浏览器分享功能进行分享
天黑时,我们仰望天空,可以看到无数的星星正在眨着眼睛看我们(当然,雾霾天、多云的时候我们是看不到的)。那么星星是什么样的呢?它们之间有什么不同呢?从最开始伽利略发明了望远镜,人们就开始不断改造观测设备,用来研究更远、更多的天体。可是对于遥远的天体,我们该怎么研究呢?最直观的想法就是从天体的位置和发出的光来研究。下面我们就来看看如何通过光来研究它们吧。
首先,现代望远镜都是通过电子元件(CMOS,CCD等)把光转换成数字信号,这样做的好处是可以探测更暗的天体。左侧是我们肉眼看到的天空,右侧则是望远镜看到的天空。4米的光谱望远镜可以观测到比人眼看到最暗的星还要暗40万倍的(人眼最暗可以看到6等星,望远镜按照19等算)。
得到了星光之后,我们就需要对光进行色散。就如同雨后的彩虹把阳光散成各种颜色一样,我们能够得到星光在不同波长处的流量。我们生活中的每一种颜色都对应着特定的波长,比如红色光的波长约为625-740纳米、绿色光的波长约为500-565纳米、蓝色光的波长约为485-500纳米。经过这波操作之后,我们看到的一闪一闪的星光就变成了下面这个样子。
我们将其称之为光谱。是不是有点股票走势图的感觉?科学家们通过分析发现,恒星光谱中最高的地方的波长与这颗恒星的温度非常相关,最高点越偏向蓝端,星也越热。相反,最高点越偏向红端,星的温度也就越低。我们的太阳温度大约为5778K(K代表温度单位开尔文)。上图是一个高温星和一个低温星的光谱。
我们发现光谱不仅能告诉我们星的温度,还可以告诉我们更多的信息。每个恒星的光都是它的内核通过核聚变产生出来的,光在向外辐射过程中,会经过厚厚的、没有参与聚变反应的恒星大气,大气中的原子、分子会选择它们喜欢的特定波长的光吸收掉,这就形成了光谱中的吸收线和吸收带。我们不但可以根据光谱中吸收线对应的波长,判断出是什么原子、分子吸收掉了光,还可以根据吸收线的深度和宽度来判断恒星大气的成分。
而利用光谱的谱线,还可以得到恒星的速度和星系的距离。那怎么利用谱线测量呢?在说明之前我们要先介绍一个知识点:多普勒效应(如下图)。
多普勒效应是指光的波长会随着星星朝向我们的速度发生改变。当星星朝我们飞行的时候,光的波长会往蓝色方向移动;当星星远离我们的时候,光的波长会朝红色的方向移动。那么我们就可以通过测量谱线偏移了多少来计算星星的移动速度。我们把这个沿着我们视线方向移动的速度称之为视向速度或者红移(对于恒星我们用视向速度,对于星系我们用红移表示)。
现在如何利用谱线测量恒星速度我们大概知道了,那么怎么测量星系的距离呢?因为我们的宇宙在膨胀,越远的天体会越快速的远离我们,我们就可以通过天体远离我们的速度来估算它们的距离了。而这个速度,就是我们上面提到的红移。其实,通过光谱我们还可以了解星星更多的信息。每当我们对宇宙有了新的发现的同时,更多的未知就会摆在我们面前。让我们一起努力吧!
作者简介:宋轶晗,国家天文台高级工程师。研究方向为一维、二维光谱处理与分析。